scholarly journals Investigation of compositional analysis and physical properties for Ni-Cr-Nb alloys using laser-induced breakdown spectroscopy

2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Hussein Salloom ◽  
Tagreed Hamad

In this work, laser-induced breakdown spectroscopy (LIBS) analysis is optimized for direct estimation of elemental composition, thermal conductivity and hardness for Ni-Cr-Nb alloys. These alloys were chosen with a variable elemental content of niobium and chromium. The influence of laser energy and shot numbers on measuring line intensity was investigated. Based on the ratio between two spectral lines, calibration curves were formed to estimate the element concentration and LIBS results were confirmed with related energy-dispersive X-ray spectroscopy (EDS) data. Hardness and thermal conductivity estimation using LIBS were done by measuring the ratio between two spectral lines, plasma excitation temperature and electron density for different samples. Semi-empirical formulas correlated hardness and thermal conductivity with plasma temperature were established.

2020 ◽  
pp. 000370282097304
Author(s):  
Amal A. Khedr ◽  
Mahmoud A. Sliem ◽  
Mohamed Abdel-Harith

In the present work, nanoparticle-enhanced laser-induced breakdown spectroscopy was used to analyze an aluminum alloy. Although LIBS has numerous advantages, it suffers from low sensitivity and low detection limits compared to other spectrochemical analytical methods. However, using gold nanoparticles helps to overcome such drawbacks and enhances the LIBS sensitivity in analyzing aluminum alloy in the current work. Aluminum was the major element in the analyzed samples (99.9%), while magnesium (Mg) was the minor element (0.1%). The spread of gold nanoparticles onto the Al alloy and using a laser with different pulse energies were exploited to enhance the Al alloy spectral lines. The results showed that Au NPs successfully improved the alloy spectral lines intensity by eight times, which could be useful for detecting many trace elements in higher matrix alloys. Under the assumption of local thermodynamic equilibrium, the Boltzmann plot was used to calculate the plasma temperature. Besides, the electron density was calculated using Mg and H lines at Mg(I) at 285.2 nm and Hα(I) at 656.2 nm, respectively. Three-dimensional contour mapping and color fill images contributed to understanding the behavior of the involved effects.


2018 ◽  
Vol 3 (8) ◽  
pp. 50 ◽  
Author(s):  
Tagreed K. Hamad ◽  
Hussein Thamer Salloom

In this study, Calibration-free Laser-induced breakdown spectroscopy (CF-LIBS) was applied to quantitatively analyze the elemental composition of Ti-6Al-4V titanium based alloy samples with no need for matrix-matched calibration procedure. Nd:YAG pulsed laser operating at a wavelength of 1064 nm was focused onto the sample to generate plasma. The spectrum of plasma was recorded using spectrophotometer then compared to NIST spectral lines to determine characteristic wavelengths, energy levels and other spectroscopic parameters. The values of plasma temperature obtained using Boltzmann plot for four examined samples ranged from 7439 to 6826 K while the electron density for each element was determined using Boltzmann-Saha equation. The concentration of Ti, Al, V and Fe has been determined and were within the samples nominal concentrations obtained from XRF analysis.  The calculated average relative errors of Ti, Al, V and Fe were 0.39%, 4.38%, 4.94 % and 8.2 %, respectively. Finally, there was a direct proportionality relation between the ratio of ionic to neutral emission lines of Ti for four samples and the surface hardness values measured mechanically using Vickers hardness test. The ratio at   had the best linear regression value (R2=0.95) which indicates the best correlation with surface hardness.


2020 ◽  
Vol 10 (19) ◽  
pp. 6848
Author(s):  
Altaf Ahmad ◽  
Muhammad Hafeez ◽  
Shahab Ahmed Abbasi ◽  
Taj Muhammad Khan ◽  
Mohammad Rashed Iqbal Faruque ◽  
...  

This article presents elemental analysis of an economically important mineral (chalcopyrite) of local origin. Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) methodology based on the assumption of optically thin plasma and local thermodynamic equilibrium was employed for quantitative analysis. Plasma on the surface of the chalcopyrite target was generated by an Nd:YAG laser beam of wavelength 532 nm, pulse width 5 ns, and operated at repetition rate of 10 Hz. A LIBS2000+ detection system, comprised of five spectrometers, covering the spectral range from 200–720 nm, was used to record the signal of the optical emission from the chalcopyrite plasma. Recorded optical spectrum revealed the presence of Cu and Fe as the major elements while Ca and Na were recognized as the minor elements in the target sample. Quantitative analysis has shown that the relative concentrations of Cu, Fe, and Ca in the sample under study were 58.9%, 40.2%, and 0.9% by weight respectively. However, Na was not quantified due to the unavailability of suitable spectral lines, required for CF-LIBS analysis. Results obtained by CF-LIBS were validated by X-ray fluorescence (XRF) analysis, which showed the presence of five compositional elements viz. Cu, Fe, Si, Se and Ag with weight percentages of 58.1%, 35.4%, 5.7%, 0.7%, and 0.1% respectively. These results endorse the effectiveness of the CF-LIBS technique for quantitative analysis of major elements, however, its usefulness in case of minor and trace elements needs further improvement.


2020 ◽  
Vol 1 (2) ◽  
pp. 5-8
Author(s):  
Komang Gde Suastika, Heri Suyanto, Gunarjo, Sadiana, Darmaji

Abstract - Laser-Induced Breakdown Spectroscopy (LIBS) is one method of atomic emission spectroscopy using laser ablation as an energy source. This method is used to characterize the type of amethysts that originally come from Sukamara, Central Kalimantan. The result of amethyst characterization can be used as a reference for claiming the natural wealth of the amethyst. The amethyst samples are directly taken from the amethyst mining field in the District Gem Amethyst and consist of four color variations: white, black, yellow, and purple. These samples were analyzed by LIBS, using laser energy of 120 mJ, delay time detection of 2 μs and accumulation of 3, with and without cleaning. The purpose of this study is to determine emission spectra characteristics, contained elements, and physical characteristics of each amethyst sample. The spectra show that the amethyst samples contain some elements such as Al, Ca, K, Fe, Gd, Ba, Si, Be, H, O, N, Cl and Pu with various emission intensities. The value of emission intensity corresponds to concentration of element in the sample. Hence, the characteristics of the amethysts are based on their concentration value. The element with the highest concentration in all samples is Si, which is related to the chemical formula of SiO2. The element with the lowest concentration in all samples is Ca that is found in black and yellow amethysts. The emission intensity of Fe element can distinguish between white, purple, and yellow amethyst. If Fe emission intensity is very low, it indicates yellow sample. Thus, we may conclude that LIBS is a method that can be used to characterize the amethyst samples.Key words: amethyst, impurity, laser-induced, breakdown spectroscopy, characteristic, gemstones


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Abdolhamed Shahedi ◽  
Esmaeil Eslami ◽  
Mohammad Reza Nourani

This study is devoted to tracing and identifying the elements available in bone sample using Laser-Induced Breakdown Spectroscopy (LIBS). The bone samples were prepared from the thigh of laboratory rats, which consumed 325.29 g/mol lead acetate having 4 mM concentration in specified time duration. About 76 atomic lines have been analyzed and we found that the dominant elements are Ca I, Ca II, Mg I, Mg II, Fe I, and Fe II. Temperature curve and bar graph were drawn to compare bone elements of group B which consumed lead with normal group, group A, in the same laboratory conditions. Plasma parameters including plasma temperature and electron density were determined by considering Local Thermodynamic Equilibrium (LTE) condition in the plasma. An inverse relationship has been detected between lead absorption and elements like Calcium and Magnesium absorption comparing elemental values for both the groups.


2019 ◽  
Vol 34 (12) ◽  
pp. 2378-2384 ◽  
Author(s):  
Ran Hai ◽  
Zhonglin He ◽  
Ding Wu ◽  
Weina Tong ◽  
Harse Sattar ◽  
...  

During laser ablation, the spectral emission intensity, plasma temperature and electron density increased significantly with increasing sample temperature.


2019 ◽  
Vol 18 (03n04) ◽  
pp. 1940022
Author(s):  
V. V. Kiris ◽  
A. V. Butsen ◽  
E. A. Ershov-Pavlov ◽  
M. I. Nedelko ◽  
A. A. Nevar

Composite Ag–Cu and Ni–C nanoparticles were synthesized by laser ablation and spark discharge in liquid, respectively. An amplification of the signal during laser induced breakdown spectroscopy was observed after deposition of the nanoparticles on the surface of an aluminum foil. The emission intensity of the laser plume increased from 2 to 20 times depending on the spectral lines used for the measurements. The intensity growth was higher for Ag–Cu nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document