scholarly journals Pulsed Electric Fields (PEF) to Mitigate Emerging Mycotoxins in Juices and Smoothies

2020 ◽  
Vol 10 (19) ◽  
pp. 6989
Author(s):  
Noelia Pallarés ◽  
Francisco J. Barba ◽  
Houda Berrada ◽  
Josefa Tolosa ◽  
Emilia Ferrer

The development of innovative food processing technologies has increased to answer the growing demand to supply of fresh-like products. The aim of the present study is to investigate the effect of pulsed electric fields (PEF) technology on reducing the emerging mycotoxins (enniatins (ENs) and beauvericin (BEA)) contents in juice and smoothie samples. The products of degradation obtained after PEF treatment were identified and their toxicological endpoint toxicities predicted by Pro Tox-II web. Mycotoxin reduction ranged from 43 to 70% in juices and smoothies, but in water the expected effect was lower. The acidified pH increased BEA reduction in water. The degradation products that were produced were the result of the loss of aminoacidic fragments of the original molecules, such as HyLv, Val, Ile, or Phe. Pro Tox-II server assigned a toxicity class I for enniatin B (ENB) degradation products with a predicted LD50 of 3 mg/Kgbw. The other degradation products were classified in toxicity class III and IV.

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1472
Author(s):  
Cristian Vaquero ◽  
Iris Loira ◽  
Javier Raso ◽  
Ignacio Álvarez ◽  
Carlota Delso ◽  
...  

New nonthermal technologies, including pulsed electric fields (PEF), open a new way to generate more natural foods while respecting their organoleptic qualities. PEF can reduce wild yeasts to improve the implantation of other yeasts and generate more desired metabolites. Two PEF treatments were applied; one with an intensity of 5 kV/cm was applied continuously to the must for further colour extraction, and a second treatment only to the must (without skins) after a 24-hour maceration of 17.5 kV/cm intensity, reducing its wild yeast load by up to 2 log CFU/mL, thus comparing the implantation and fermentation of inoculated non-Saccharomyces yeasts. In general, those treated with PEF preserved more total esters and formed more anthocyanins, including vitisin A, due to better implantation of the inoculated yeasts. It should be noted that the yeast Lachancea thermotolerans that had received PEF treatment produced four-fold more lactic acid (3.62 ± 0.84 g/L) than the control of the same yeast, and Hanseniaspora vineae with PEF produced almost three-fold more 2-phenylethyl acetate than the rest. On the other hand, 3-ethoxy-1-propanol was not observed at the end of the fermentation with a Torulaspora delbrueckii (Td) control but in the Td PEF, it was observed (3.17 ± 0.58 mg/L).


Foods ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 169 ◽  
Author(s):  
Biniam Kebede ◽  
Pui Lee ◽  
Sze Leong ◽  
Vidya Kethireddy ◽  
Qianli Ma ◽  
...  

High-Pressure Processing (HPP) and Pulsed Electric Fields (PEF) processing technologies are being used increasingly on a commercial basis, with high-quality labelled fruit juices being one of the most important promotion strategies. Quality-related enzymes, which might still be active after HPP and PEF pasteurization, can cause undesirable aroma changes during storage. This study investigated volatile changes during the shelf life of PEF (15.5 kV/cm and specific energy of 158 kJ/L), HPP (600 MPa for 3 min), and thermally (72 °C for 15 s) pasteurized Jazz apple juices—up to five weeks. To have an increased insight into the volatile changes, an integrated instrumental (GC-MS) and data analysis (chemometrics) approach was implemented. Immediately after pasteurization, PEF processing resulted a better retention of odor-active volatiles, such as (E)-2-hexenal and hexyl acetate, whereas thermal processing lowered their amount. During refrigerated storage, these volatiles have gradually decreased in all processed juices. By the end of storage, the amount of these aroma relevant volatiles appears to still be higher in PEF and HPP pasteurized juices compared to their conventional counterparts. This study demonstrated the potential of advanced chemometric approaches to obtain increased insight into complex shelf life changes.


2019 ◽  
Vol 26 (3) ◽  
pp. 434-447
Author(s):  
Amir M. S. Lala ◽  
Amr Talaat

The offshore Nile Delta Basin is considered as one of the most promising hydrocarbon provinces in Egypt, with an excellent potential for gas and condensate reserves following future exploration. Most of the discoveries in this basin, such as the reservoirs of the Upper Miocene and the Middle–Upper Pliocene, have been enabled by the use of a direct hydrocarbon indicator (DHI), based on a class III seismic amplitude v. offset (AVO) anomaly. However, there are gas-bearing formations in the Lower Pliocene that have been successfully tested where the sand did not show any seismic amplitude anomaly in full stacks or in near- and far-offset sub-stacks. The AVO analysis of this sand reservoir is referred to as AVO class II-P. Another case of a subtle AVO class I anomaly in a Lower Pliocene gas reservoir has also been tested by three wells.These variations in AVO types push us to find a new methodology to reduce the risk of unsuccessful exploration wells, mainly using seismic data. The enhanced AVO pseudo-gradient attribute (EAP) has previously been used in other studies, mainly to highlight AVO class III anomalies. However, in the present paper, we demonstrate a workflow to identify all the principal AVO classes observed in this province. Computing the EAP attribute from our data, we find that AVO class I has negative EAP values, while the other classes have positive values. Class III and classes II and II-P may be distinguished from each other as the former yields a strong positive EAP value, whereas the latter two classes yield weak EAP responses.After determining the AVO class, we define and use a new model attribute, herein termed NM, to differentiate between gas- and water-bearing formations for each class of AVO anomaly found in this province. This new method was successfully tested in many areas in the Nile Delta Basin, where it has helped to identify subtle anomalies and thereby open the gate for further exploration activities in the area.


Sign in / Sign up

Export Citation Format

Share Document