scholarly journals The Effect of Site-Specific Design Spectrum on Earthquake-Building Parameters: A Case Study from the Marmara Region (NW Turkey)

2020 ◽  
Vol 10 (20) ◽  
pp. 7247
Author(s):  
Ercan Işık ◽  
Aydın Büyüksaraç ◽  
Yunus Levent Ekinci ◽  
Mehmet Cihan Aydın ◽  
Ehsan Harirchian

The Marmara Region (NW Turkey) has experienced significant earthquakes (M > 7.0) to date. A destructive earthquake is also expected in the region. To determine the effect of the specific design spectrum, eleven provinces located in the region were chosen according to the Turkey Earthquake Building Code updated in 2019. Additionally, the differences between the previous and updated regulations of the country were investigated. Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) were obtained for each province by using earthquake ground motion levels with 2%, 10%, 50%, and 68% probability of exceedance in 50-year periods. The PGA values in the region range from 0.16 to 0.7 g for earthquakes with a return period of 475 years. For each province, a sample of a reinforced-concrete building having two different numbers of stories with the same ground and structural characteristics was chosen. Static adaptive pushover analyses were performed for the sample reinforced-concrete building using each province’s design spectrum. The variations in the earthquake and structural parameters were investigated according to different geographical locations. It was determined that the site-specific design spectrum significantly influences target displacements for performance-based assessments of buildings due to seismicity characteristics of the studied geographic location.

2019 ◽  
Vol 25 (3) ◽  
pp. 102-116
Author(s):  
Rafaa Mahmood Abbas ◽  
Ruaa A. Abdulhameed

This paper aims to study the second-order geometric nonlinearity effects of P-Delta on the dynamic response of tall reinforced concrete buildings due to a wide range of earthquake ground motion forces, including minor earthquake up to moderate and strong earthquakes. The frequency domain dynamic analysis procedure was used for response assessment. Reinforced concrete building models with different heights up to 50 stories were analyzed. The finite element software ETABS (version 16.0.3) was used to analyze reinforced concrete building models. The study reveals that the percentage increase in buildings' sway and drift due to P-Delta effects are nearly constant for specific building height irrespective of the seismic design category assigned to the building. Generally, increase in building lateral displacement and story drift due to P-Delta effects for all seismic design categories is less than 2% for 10 story buildings, whereas this increase for 20 stories or taller buildings is significant with a maximum value around 16% for 50 story building. As for column forces, the study shows that, generally, columns bending moment increases and shear force decreases when P-Delta effects accounted for. In conclusion, the study recommended that the effects of P-Delta need to be addressed for all SDCs allowed by ASCE7-10 and the most important factor to abandonment P-Delta effects is the building height limit.  


2017 ◽  
Author(s):  
Chee Ghuan Tan ◽  
Wei Ting Chia ◽  
Taksiah A. Majid ◽  
Fadzli Mohamed Nazri ◽  
Mohd Irwan Adiyanto

2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Thasbih Al Fajri ◽  
Rafki Imani ◽  
Zakpar Siregar

The office building of the food security office of West Sumatra Province is a multi-storey building with reinforced concrete structures built in earthquake-prone areas that have the potential for large-scale earthquakes such as the one that occurred in 2009. Based on USGS data, from December 2004 to October 2009 There have been 10 earthquakes measuring more than 5 on the Richter scale that rocked Indonesia and resulted in damage to buildings, both minor damage to heavy damage and evencollapsing. The big earthquake that occurred on September 30, 2009 in Padang City, West Sumatra, was measuring 7.6 on the Richter scale. In this study, evaluated the seismic capacity of a reinforced concrete building 4 (four) floors built in earthquake-prone areas in the city of Padang. The seismic capacity of the building is evaluated based on the standard published by Japan, namely The Standard for Seismic Evaluation of Existin Reinforced Concrete Building, 2001. In this evaluation, it only looks at the structural elements of the column on the first floor. Seismic capacity is expressed in terms of the lateral strength index and the ductility index of the building. The results of the evaluation of seismic capacity obtained the total strength index value of the building is 0.707. The seismic capacity of this building can be shown to be adequate or strongin earthquake-prone areas compared to the seismic capacity of reinforced concrete buildings that survived the massive earthquake of 7.6 on the Richter Scale in West Sumatra in September 2009. From the evaluation results on this building which is located in an area including the prone to strong earthquakes can be stated to be able to behave ductile and able to withstand an earthquake or not experience sudden collapse


2019 ◽  
Vol 8 (4) ◽  
pp. 3633-3637

Precast concrete structures are widely used in construction. It consists of prefabricated elements casted in industry and connected to each other to form a homogeneous structure. Connections function is to transfer moments and axial forces. Many engineers assume precast connection as pinned, but in reality, they are semi-rigid connections that transfer forces to other members. Lack of design and detailing of connection leads to improper behaviour of the structure, which then leads to the collapse of the building. Past earthquake studies show that many precast buildings performed poorly, and the main reasons were connections. This paper mainly focuses on understanding the seismic behaviour of mid-rise i.e seven-storey precast reinforced concrete buildings with various beam-column joints i.e rigid, semi-rigid, pinned and column-base supports i.e, fixed and hinged supports. Building is modelled and analyzed using ETABS v17 software. Rotational stiffness of precast billet connection is adopted for modelling of semi-rigid beam-column connections. Response spectrum and modal analysis are carried out. Results of displacements, storey drift, storey shear, storey stiffness, base shear, time periods and first mode shapes of models are discussed. It is observed, precast reinforced concrete building models with semi rigid connection performs better than building models with pinned connections and building models with fixed supports reduces the structural response to a great extent.


Sign in / Sign up

Export Citation Format

Share Document