scholarly journals Improved Sound Radiation of Flat Panel Loudspeakers Using the Local Air Spring Effect

2020 ◽  
Vol 10 (24) ◽  
pp. 8926
Author(s):  
Benjamin Zenker ◽  
Robert Schurmann ◽  
Sebastian Merchel ◽  
M. Ercan Altinsoy

The low-frequency performance of exciter-driven flat-panel loudspeakers is technically challenging. The lower modal density results in high deviations in the frequency response, and dips of more than 20 dB are possible. This paper presents an alternative approach for optimizing the modal behavior through the additional air spring effect of an irregular shaped enclosure. The additional mode-dependent air compliance suppresses the panel’s anti-phase components, which minimizes dips in the frequency response and improves the response without adding mass to the system. The approach is analyzed with the measured and simulated results of a prototype. Furthermore, additional enclosure changes were made to visualize the influence of the air spring improved system.

2021 ◽  
Vol 498 ◽  
pp. 115940
Author(s):  
Prashant Kumar ◽  
Rammohan Sriramdas ◽  
Ali E. Aliev ◽  
John B. Blottman ◽  
Nathanael K. Mayo ◽  
...  

2011 ◽  
Vol 680 ◽  
pp. 114-149 ◽  
Author(s):  
ZORANA ZERAVCIC ◽  
DETLEF LOHSE ◽  
WIM VAN SAARLOOS

In this paper the collective oscillations of a bubble cloud in an acoustic field are theoretically analysed with concepts and techniques of condensed matter physics. More specifically, we will calculate the eigenmodes and their excitabilities, eigenfrequencies, densities of states, responses, absorption and participation ratios to better understand the collective dynamics of coupled bubbles and address the question of possible localization of acoustic energy in the bubble cloud. The radial oscillations of the individual bubbles in the acoustic field are described by coupled linearized Rayleigh–Plesset equations. We explore the effects of viscous damping, distance between bubbles, polydispersity, geometric disorder, size of the bubbles and size of the cloud. For large enough clusters, the collective response is often very different from that of a typical mode, as the frequency response of each mode is sufficiently wide that many modes are excited when the cloud is driven by ultrasound. The reason is the strong effect of viscosity on the collective mode response, which is surprising, as viscous damping effects are small for single-bubble oscillations in water. Localization of acoustic energy is only found in the case of substantial bubble size polydispersity or geometric disorder. The lack of localization for a weak disorder is traced back to the long-range 1/r interaction potential between the individual bubbles. The results of the present paper are connected to recent experimental observations of collective bubble oscillations in a two-dimensional bubble cloud, where pronounced edge states and a pronounced low-frequency response had been observed, both consistent with the present theoretical findings. Finally, an outlook to future possible experiments is given.


1975 ◽  
Vol 34 (16) ◽  
pp. 1059-1060 ◽  
Author(s):  
P. N. Sen ◽  
B. A. Huberman

Author(s):  
Paolo Bergamo ◽  
Conny Hammer ◽  
Donat Fäh

ABSTRACT We address the relation between seismic local amplification and topographical and geological indicators describing the site morphology. We focus on parameters that can be derived from layers of diffuse information (e.g., digital elevation models, geological maps) and do not require in situ surveys; we term these parameters as “indirect” proxies, as opposed to “direct” indicators (e.g., f0, VS30) derived from field measurements. We first compiled an extensive database of indirect parameters covering 142 and 637 instrumented sites in Switzerland and Japan, respectively; we collected topographical indicators at various spatial extents and focused on shared features in the geological descriptions of the two countries. We paired this proxy database with a companion dataset of site amplification factors at 10 frequencies within 0.5–20 Hz, empirically measured at the same Swiss and Japanese stations. We then assessed the robustness of the correlation between individual site-condition indicators and local response by means of statistical analyses; we also compared the proxy-site amplification relations at Swiss versus Japanese sites. Finally, we tested the prediction of site amplification by feeding ensembles of indirect parameters to a neural network (NN) structure. The main results are: (1) indirect indicators show higher correlation with site amplification in the low-frequency range (0.5–3.33 Hz); (2) topographical parameters primarily relate to local response not because of topographical amplification effects but because topographical features correspond to the properties of the subsurface, hence to stratigraphic amplification; (3) large-scale topographical indicators relate to low-frequency response, smaller-scale to higher-frequency response; (4) site amplification versus indirect proxy relations show a more marked regional variability when compared with direct indicators; and (5) the NN-based prediction of site response is the best achieved in the 1.67–5 Hz band, with both geological and topographical proxies provided as input; topographical indicators alone perform better than geological parameters.


Sign in / Sign up

Export Citation Format

Share Document