scholarly journals Vibration-Based Thermal Health Monitoring for Face Layer Debonding Detection in Aerospace Sandwich Structures

2020 ◽  
Vol 11 (1) ◽  
pp. 211
Author(s):  
Thomas Bergmayr ◽  
Christoph Kralovec ◽  
Martin Schagerl

This paper investigates the potential of a novel vibration-based thermal health monitoring method for continuous and on-board damage detection in fiber reinforced polymer sandwich structures, as typically used in aerospace applications. This novel structural health monitoring method uses the same principles, which are used for vibration-based thermography in combination with the concept of the local defect resonance, as a well known non-destructive testing method (NDT). The use of heavy shakers for applying strong excitation and infrared cameras for observing thermal responses are key hindrances for the application of vibration-based thermography in real-life structures. However, the present study circumvents these limitations by using piezoelectric wafer active sensors as excitation source, which can be permanently bonded on mechanical structures. Additionally, infrared cameras are replaced by surface temperature sensors for observing the thermal responses due to vibrations and damage. This makes continuous and on-board thermal health monitoring possible. The new method is experimentally validated in laboratory experiments by a sandwich structure with face layer debonding as damage scenario. The debonding is realized by introduction of an insert during the manufacturing process of the specimen. The surface temperature sensor results successfully show the temperature increase in the area of the debonding caused by a sinusoidal excitation of the sandwich structure with the PWAS at the first resonance frequency of the damage. This is validated by conventional infrared thermography. These findings demonstrate the potential of the proposed novel thermal health monitoring method for detecting, localizing and estimating sizes of face layer debonding in sandwich structures.


2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.





Author(s):  
Chenhao Wu ◽  
Jiguang Yue ◽  
Jincheng Liu ◽  
Yongqing Su ◽  
Li Wang


2021 ◽  
Vol 9 ◽  
Author(s):  
Sheng Liu ◽  
Yibo Wei ◽  
Yongxin Yin ◽  
Tangzheng Feng ◽  
Jinbao Lin

Pantograph-catenary system provides electric energy for the subway lines; its health status is essential to the serviceability of the vehicle. In this study, a real-time structural health monitoring method based on strain response inversion is proposed to calculate the magnitude and position of the dynamic contact force between the catenary and pantograph. The measurement principle, calibration, and installation detail of the fiber Bragg grating (FBG) sensors are also presented in this article. Putting this monitoring system in use, an application example of a subway with a rigid overhead catenary is given to demonstrate its performance. The pantograph was monitored and analyzed, running underground at a maximum speed of 80 km/h. The results show that the strain response inversion method has high measurement accuracy, good data consistency, and flexibility on sensor installation. It can accurately calculate the magnitude and location of the contact force exerted on the pantograph.





2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhongxiao Wang ◽  
Dong Zhu

Ethnic sports are various ethnic sports that have gradually evolved into various popular sports in the long-term life experience, according to different living habits and residential areas, in the hunting activities of similar sports in the past. Based on the use of wireless sensor networks, this paper monitors the traditional national sports activities, provides real-time feedback on the actual human body conditions in different sports, and finds out the pros and cons of traditional sports and makes improvements. The object proposes a national automated monitoring test, which uses several small sensors in the wireless sensor network to transmit information to monitor many real conditions in the human body during multisport, so as to find out that the national sports exercise is in real life. Experimental results show that in recent years, all ethnic groups have attached great importance to ethnic sports. The 11th Ethnic Minority Games held in 2019 will have 18 competitions, 17 individual events, 131 small events, and 55 ethnic minorities that participated in the joint participation of more than 7000 athletes participating in traditional sports of all nationalities and are the best inheritance and development of national sports.





2021 ◽  
Author(s):  
Yan Liang ◽  
Yi Huang ◽  
Cunbao Ma ◽  
Yihan Guo ◽  
Biyuan Hu ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document