scholarly journals Study on Influence of Multi-Parameter Variation of Bladed Disk System on Vibration Characteristics

2021 ◽  
Vol 11 (7) ◽  
pp. 3084
Author(s):  
Honggang Pan ◽  
Yunshi Wu ◽  
Tianyu Zhao

As the main components of the rotor system of aero-engines and other rotating machinery equipment, the bladed disk system has high requirements on its structure design, safety and stability. Taking the rotor disk system of aero-engines as the research object, modal calculation of the rotor disk system was based on the group theory algorithm, and using the fine sand movement on the experimental disk to express the disk vibration shape. The experimental vibration mode is used to compare with the finite element calculation results to verify the reliability of the finite element analysis. Study on the effect of dissonance parameter changes on the bladed disk system vibration characteristics concluded that the vibration mode trends of the blisk system and the disc are, basically, consistent. As the mass of the blade increases, the modal frequencies of the entire blisk system gradually decrease, and the amplitude slightly increases. When the mass increases at different parts of the blade, the effect on the modal frequencies of the bladed disk system are not obvious. When the bladed disk system vibrates at low frequency, the disc will not vibrate and each blade will vibrate irregularly. The bladed disk should be avoided to work in this working area for a long time, so as not to cause fatigue damage or even fracture of some blades.

2020 ◽  
Vol 12 (11) ◽  
pp. 168781402097306
Author(s):  
Hui Zhang ◽  
Tianyu Zhao ◽  
Hongyuan Zhang ◽  
Honggang Pan ◽  
Huiqun Yuan

In order to study the rubbing of the mistuned bladed disk system with variable thickness blades, an elastically supported shaft-variable thickness blades coupled finite element model is established in this paper. A new rubbing force model is proposed considering the variable thickness section characteristics and rotation effect of the variable thickness blade. A method of mistuned parameter identification is introduced which consists of static frequency testing of blades, dichotomy, and finite element analysis. Based on the finite element method, the mistuned bladed disk system is made dynamic analysis in full rubbing by applying the judgment load method. The dynamic response of the mistuned bladed disk system is discussed under different conditions. The results show that increasing the amount of mistuning will increase the system vibration. At high speeds, the impact force will be partially offset by centrifugal force. And the rubbing gap affects the form of rubbing. With the gap decreases, the system will change from intermittent rubbing to continuous rubbing. In addition, when the system is rubbed, due to energy dissipation and blade damping, the stress is transferred from the blade tip to the blade root and attenuated. In general, rubbing is a random complex nonlinear vibration process.


Author(s):  
M Ramalingam ◽  
D Davidson Jebaseelan

The Automotive Seating System (ASS) is an important sub-system in a car for increasing the ride comfort of driver/occupant and hence the need for a systematic study on the vibration characteristics of ASS is of importance. The present study finds out the vibration characteristics of four models of automotive seating system, with and without dummy mass using finite element analysis. The vibration mode shapes such as lateral, fore-aft and twisting of automotive seating system found in the frequency range 0-80 Hz for the four models of automotive seating system and correlated with experimental results found in the literature. The natural frequency of the seat with dummy mass was found to be in the human discomfort zone of the spinal column (10–12 Hz) and abdomen (4–8 Hz). The vibration transfer to occupant body was studied at 11 positions, with unit acceleration given at four mounting locations of automotive seating system in three directions separately. The vibration transmissibility was found to be higher than one in seat backrest. The random vibration analysis was carried out to identify the acceleration level of automotive seating system, subjected to smooth and rough road excitations. In the case of rough road random excitations, the results of root mean square acceleration values in automotive seating system show that the driver/passenger feels “fairly comfortable”. This study emphasizes the importance of the ride comfort of driver/occupant. To enhance the ride comfort, the stiffness of seat structure has to be modified and suspension system has to be introduced.


1997 ◽  
Vol 119 (1) ◽  
pp. 161-167 ◽  
Author(s):  
M.-T. Yang ◽  
J. H. Griffin

A reduced order approach is introduced in this paper that can be used to predict the steady-state response of mistuned bladed disks. This approach takes results directly from a finite element analysis of a tuned system and, based on the assumption of rigid blade base motion, constructs a computationally efficient mistuned model with a reduced number of degrees of freedom. Based on a comparison of results predicted by different approaches, it is concluded that: The reduced order model displays structural fidelity comparable to that of a finite element model of the entire bladed disk system with significantly improved computational efficiency; and under certain circumstances both the finite element model and the reduced order model predict quite different response from simple spring-mass models.


Author(s):  
M.-T. Yang ◽  
J. H. Griffin

A reduced order approach is introduced in this paper that can be used to predict the steady-state response of mistuned bladed disks. This approach takes results directly from a finite element analysis of a tuned system and, based on the assumption of rigid blade base motion, constructs a computationally efficient mistuned model with a reduced number of degrees of freedom. Based on a comparison of results predicted by different approaches it is concluded that: the reduced order model displays structural fidelity comparable to that of a finite element model of the entire bladed disk system with significantly improved computational efficiency; and under certain circumstances both the finite element model and the reduced order model predict quite different response from simple spring-mass models.


2021 ◽  
Author(s):  
Xiaolin Zhang ◽  
Tianyi Guan ◽  
Lei Fan ◽  
Na Wang ◽  
Li Shang ◽  
...  

Author(s):  
Md Mohiuddin ◽  
Asma Akther ◽  
Eun Byul Jo ◽  
Hyun Chan Kim ◽  
Jaehwan Kim

The present study investigates a film actuator made with dielectric cellulose acetate films separated by narrow spacers as a means of electrostatic actuation for potential haptic application. Fabrication process for the actuator is explained along with experiments conducted over a wide frequency range of actuation frequency. A valid finite element simulation of the actuator is made on the quarter section of the actuator by using full 3D finite elements. Vibration characteristics such as fundamental natural frequency, mode shape and output velocity in the frequency range for haptic feeling generation are obtained from the finite element analysis and compared with the experimental results. Experimental results demonstrate that the finite element model is practical and effective enough in predicting the vibration characteristics of the actuator for haptic application. The film actuator shows many promising properties like high transparency, wide range of actuation frequency and high vibration velocity for instance.


Sign in / Sign up

Export Citation Format

Share Document