scholarly journals Evaluation of Deep Learning-Based Automatic Floor Plan Analysis Technology: An AHP-Based Assessment

2021 ◽  
Vol 11 (11) ◽  
pp. 4727
Author(s):  
Hyunjung Kim

This study proposes a technology that allows automatic extraction of vectorized indoor spatial information from raster images of floor plans. Automatic reconstruction of indoor spaces from floor plans is based on a deep learning algorithm, which trains on scanned floor plan images and extracts critical indoor elements such as room structures, junctions, walls, and openings. The newly developed technology proposed herein can handle complicated floor plans which could not be automatically extracted by previous studies because of its complexity and difficulty in being trained in deep learning. Such complicated reconstruction solely from a floor plan image can be digitized and vectorized either through manual drawing or with the help of newly developed deep learning-based automatic extraction. This study proposes an evaluation framework for assessing this newly developed technology against manual digitization. Using the analytical hierarchy process, the hierarchical aspects of technology value and their relative importance are systematically quantified. The analysis suggested that the automatic technology using a deep learning algorithm had predominant criteria followed by, substitutability, completeness, and supply and demand. In this study, the technology value of automatic floor plan analysis compared with that of traditional manual edits is compared systemically and assessed qualitatively, which had not been done in existing studies. Consequently, this study determines the effectiveness and usefulness of automatic floor plan analysis as a reasonable technology for acquiring indoor spatial information.

2021 ◽  
Vol 10 (12) ◽  
pp. 828
Author(s):  
Hyunjung Kim ◽  
Seongyong Kim ◽  
Kiyun Yu

Automatic floor plan analysis has gained increased attention in recent research. However, numerous studies related to this area are mainly experiments conducted with a simplified floor plan dataset with low resolution and a small housing scale due to the suitability for a data-driven model. For practical use, it is necessary to focus more on large-scale complex buildings to utilize indoor structures, such as reconstructing multi-use buildings for indoor navigation. This study aimed to build a framework using CNN (Convolution Neural Networks) for analyzing a floor plan with various scales of complex buildings. By dividing a floor plan into a set of normalized patches, the framework enables the proposed CNN model to process varied scale or high-resolution inputs, which is a barrier for existing methods. The model detected building objects per patch and assembled them into one result by multiplying the corresponding translation matrix. Finally, the detected building objects were vectorized, considering their compatibility in 3D modeling. As a result, our framework exhibited similar performance in detection rate (87.77%) and recognition accuracy (85.53%) to that of existing studies, despite the complexity of the data used. Through our study, the practical aspects of automatic floor plan analysis can be expanded.


2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


Sign in / Sign up

Export Citation Format

Share Document