scholarly journals Five-Membered Cyclic Carbonates: Versatility for Applications in Organic Synthesis, Pharmaceutical, and Materials Sciences

2021 ◽  
Vol 11 (11) ◽  
pp. 5024
Author(s):  
Patrick Rollin ◽  
Liane K. Soares ◽  
Angelita M. Barcellos ◽  
Daniela R. Araujo ◽  
Eder J. Lenardão ◽  
...  

This review presents the recent advances involving several applications of five-membered cyclic carbonates and derivatives. With more than 150 references, it covers the period from 2012 to 2020, with special emphasis on the use of five-membered cyclic carbonates as building blocks for organic synthesis and material elaboration. We demonstrate the application of cyclic carbonates in several important chemical transformations, such as decarboxylation, hydrogenation, and transesterification reactions, among others. The presence of cyclic carbonates in molecules with high biological potential is also displayed, together with the importance of these compounds in the preparation of materials such as urethanes, polyurethanes, and flame retardants.

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4906
Author(s):  
Jurriën W. Collet ◽  
Thomas R. Roose ◽  
Bram Weijers ◽  
Bert U. W. Maes ◽  
Eelco Ruijter ◽  
...  

Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1510
Author(s):  
Renato Dalpozzo ◽  
Raffaella Mancuso

Benzopyran and benzodihydropyran (chromane) nuclei are the core structure of many natural products, in particular flavonoids. Many compounds possessing this structure are nutraceuticals, pharmaceutical nutrients. Therefore, benzopyran and chromane scaffolds are important building blocks in organic synthesis and many efforts have been made to set up efficient methods for their synthesis. In particular, asymmetric methods are of great importance, being natural products, and generally chiral substances. This review aims to cover literature in the range 2017–first half of 2019.


SynOpen ◽  
2021 ◽  
Author(s):  
Mohamed Hassan ◽  
Cedric Ndefo Nde ◽  
Georg Manolikakes

Nitroolefins are highly versatile building blocks for organic synthesis. Herein, we want to highlight some of the most recent advances in the synthesis of nitroolefins via a direct nitration of their parent alkenes.


Synthesis ◽  
2020 ◽  
Author(s):  
Fuchao Yu ◽  
Jiuzhong Huang

AbstractEnaminones are gaining increasing interest because of their unique properties and their importance in organic synthesis as versatile building blocks. N,N-Dimethyl enaminones offer a better leaving group (a dimethylamine group) than other enaminones, and allow further elaboration via a range of facile chemical transformations. Over the past five years, there have been an increasing number of reports describing the synthetic applications of N,N-dimethyl enaminones. This review provides a comprehensive overview on the synthetic applications of N,N-dimethyl enaminones that have been reported since 2016.1 Introduction2 Direct C(sp2)–H α-Functionalization2.1 Synthesis of α-Sulfenylated N,N-Dimethyl Enaminones2.2 Synthesis of α-Thiocyanated N,N-Dimethyl Enaminones2.3 Synthesis of α-Acyloxylated N,N-Dimethyl Enaminones3 Functionalization Reactions via C=C Double Bond Cleavage3.1 Synthesis of Functionalized Methyl Ketones3.2 Synthesis of α-Ketoamides, α-Ketoesters and 1,2-Diketones3.3 Synthesis of N-Sulfonyl Amidines4 Construction of All-Carbon Aromatic Scaffolds4.1 Synthesis of Benzaldehydes4.2 Synthesis of the Naphthalenes5 Construction of Heterocyclic Scaffolds5.1 Synthesis of Five-Membered Heterocycles5.2 Synthesis of Six-Membered Heterocycles5.3 Synthesis of Quinolines 5.4 Synthesis of Functionalized Chromones5.5 Synthesis of Other Fused Polycyclic Heterocycles6 Conclusions and Perspectives


ChemInform ◽  
2003 ◽  
Vol 34 (27) ◽  
Author(s):  
Armin de Meijere ◽  
Ilya D. Kuchuk ◽  
Viktor V. Sokolov ◽  
Thomas Labahn ◽  
Karsten Rauch ◽  
...  

Synthesis ◽  
2021 ◽  
Author(s):  
Biwei Yan ◽  
Wusheng Guo

Functionalized cyclic organic carbonates have emerged as valuable building blocks for the construction of interesting and useful molecules upon decarboxylation under transition metal catalysis in recent years. With suitable catalytic system, the development of chemo-, regio-, stereo- and enantioselective methods for the synthesis of useful and interesting compounds has advanced greatly. On the basis of previous research work on this topic, this short review will highlight the synthetic potential of cyclic carbonates under transition metal catalysis in last two years. 1 Introduction 2 Transition metal catalyzed decarboxylation of vinyl cyclic carbonates 3 Zwitterionic enolate chemistry based on transition metal catalysis 4 Decarboxylation of alkynyl cyclic carbonates and dioxazolones 5 Conclusions and perspectives


2018 ◽  
Vol 16 (7) ◽  
pp. 1050-1064 ◽  
Author(s):  
Rajender Nallagonda ◽  
Kishor Padala ◽  
Ahmad Masarwa

Recently,gem-diborylalkanes have attracted much attention as versatile building blocks and fundamental intermediates in organic synthesis, because they enable multiple C–C bond construction and further transformation at C–B bonds.


Author(s):  
Huanfeng Jiang ◽  
Wanqing Wu ◽  
Ziying Wu ◽  
Miao Hu ◽  
Jianxiao Li

Alkenes are versatile building blocks in modern organic synthesis. In the difunctionalization reactions of alkenes, two functional groups can be simultaneously introduced into the π system. This is an efficient...


2019 ◽  
Author(s):  
De-Wei Gao ◽  
Yang Gao ◽  
Huiling Shao ◽  
Tian-Zhang Qiao ◽  
Xin Wang ◽  
...  

Enantioenriched <i>α</i>-aminoboronic acids play a unique role in medicinal chemistry and have emerged as privileged pharmacophores in proteasome inhibitors. Additionally, they represent synthetically useful chiral building blocks in organic synthesis. Recently, CuH-catalyzed asymmetric alkene hydrofunctionalization has become a powerful tool to construct stereogenic carbon centers. In contrast, applying CuH cascade catalysis to achieve reductive 1,1-difunctionalization of alkynes remains an important, but largely unaddressed, synthetic challenge. Herein, we report an efficient strategy to synthesize <i>α</i>-aminoboronates <i>via </i>CuH-catalyzed hydroboration/hydroamination cascade of readily available alkynes. Notably, this transformation selectively delivers the desired 1,1-heterodifunctionalized product in favor of alternative homodifunctionalized, 1,2-heterodifunctionalized, or reductively monofunctionalized byproducts, thereby offering rapid access to these privileged scaffolds with high chemo-, regio- and enantioselectivity.<br>


Sign in / Sign up

Export Citation Format

Share Document