scholarly journals Low-Intensity Whole-Body Vibration: A Useful Adjuvant in Managing Obesity? A Pilot Study

2021 ◽  
Vol 11 (11) ◽  
pp. 5101
Author(s):  
Michele Gobbi ◽  
Cristina Ferrario ◽  
Marco Tarabini ◽  
Giuseppe Annino ◽  
Nicola Cau ◽  
...  

The use of whole-body vibration (WBV) for therapeutic purposes is far from being standardized and an empirical foundation for reporting guidelines for human WBV studies has only very recently been published. Controversies about safety and therapeutic dosage still exist. The present study aimed to investigate the metabolic and mechanical effects of low-intensity WBV according to the ISO 2631 norm on subjects with obesity. Forty-one obese subjects (BMI ≥ 35 kg/m2) were recruited to participate in a 3-week multidisciplinary inpatient rehabilitation program including fitness training and WBV training. During WBV the posture was monitored with an optoelectronic system with six infrared cameras (Vicon, Vicon Motion System, Oxford, UK). The primary endpoints were: variation in body composition, factors of metabolic syndrome, functional activity (sit-to-stand and 6-min walking test), muscle strength, and quality of life. The secondary endpoints were: modification of irisin, testosterone, growth hormone, IGF1 levels. We observed significant changes in salivary irisin levels, Group 2 (p < 0.01) as compared to the control group, while muscle strength, function, and other metabolic and hormonal factors did not change after a 3-week low-intensity WBV training with respect to the control group. Future studies are needed to further investigate the potential metabolic effect of low-intensity WBV in managing weight.

Author(s):  
Michele Gobbi ◽  
Cristina Ferrario ◽  
Marco Tarabini ◽  
Giuseppe Annino ◽  
Nicola Cau ◽  
...  

The use of whole-body vibration (WBV) for therapeutic purposes is far from being standardized and only very recently an empirical foundation for reporting guidelines for human WBV studies has been published. Controversies about safety and therapeutic dosage stll exist. The present study aimed to investigate the metabolic and mechanical effects of low-intensity WBV in according to the ISO 2631 norm on subjects with obesity. 41 obese subjects (BMI&ge; 35 kg/m&circ;2) were recruited to participate in a 3-week multidisciplinary inpatient rehabilitation program including fitness training and WBV training. During WBV the posture was monitored with an optoelectronic system with 6 infrared cameras (Vicon, Vicon Motion System, Oxford, UK). The primary endpoints were: variation in body composition, factors of the metabolic syndrome, functional activity (sit-to-stand and 6-min walking test), muscle strength, and quality of life. Secondary endpoints were: modification of irisin, testosterone, growth hormone, IGF1 levels. We observed significant changes in salivary irisin levels, Group 2 (p&amp;lt;0.01) as compared to the control group, while muscle strength, function, and other metabolic and hormonal factors did not change after a 3-week low-intensity WBV training respect control group. Future studies are needed to deeper investigate the potential metabolic effect of low-intensity WBV in managing weight.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Rania G. Hegazy ◽  
Amr Almaz Abdel-aziem ◽  
Eman I. El Hadidy ◽  
Yosra M. Ali

Abstract Background Hemiplegic cerebral palsy (CP) enormously affects the quadriceps and hamstring muscles. It causes weakness in the affected lower-extremity muscles in addition to muscle imbalance and inadequate power production, especially in the ankle plantar-flexor and knee extensor muscles. It also causes anomalous delayed myoelectrical action of the medial hamstring. A whole-body vibration (WBV) exercise can diminish muscle spasticity and improve walking speed, muscle strength, and gross motor function without causing unfavorable impacts in adults suffering from CP. Thus, the aim of this study is to investigate the impacts of WBV training associated with conventional physical therapy on the quadriceps and hamstring muscle strength, endurance, and power in children with hemiparetic CP. Results The post-intervention values of the quadriceps and hamstring muscle force, endurance, and power were significantly higher than the pre-intervention values for both groups (p = 0.001). The post-intervention values of the study group were significantly higher than the control group (quadriceps force, p = 0.015; hamstring force, p = 0.030; endurance, p = 0.025; power, p = 0.014). Conclusion The 8 weeks of WBV training that was added to traditional physical therapy was more successful in improving the quadriceps and hamstring muscle strength, endurance, and power in children with hemiparetic CP when compared to traditional physical therapy alone.


Medicina ◽  
2020 ◽  
Vol 56 (9) ◽  
pp. 457
Author(s):  
Milad Etemadi Sh ◽  
Nan-Chen Hsieh ◽  
Seyed Shahin Movahed Mohammadi ◽  
Shahrooz Momeni ◽  
Seyed Mohammad Razavi ◽  
...  

Background and Objectives: Mechanical stimulation can improve the structural properties of the fracture site and induce the differentiation of different cell types for bone regeneration. This study aimed to compare the effect of low-intensity pulsed ultrasound stimulation (LIPUS) versus whole body vibration (WBV) on healing of mandibular bone defects. Materials and Methods: A mandibular defect was created in 66 rats. The rats were randomly divided into two groups of rats. Each group was subdivided randomly by three groups (n = 11) as follows: (I) control group, (II) treatment with LIPUS, and (III) treatment with WBV. The radiographic changes in bone density, the ratio of lamellar bone to the entire bone volume, the ratio of the newly formed bone to the connective tissue and inflammation grade were evaluated after 1 and 2 months. Results: LIPUS significantly increased the radiographic bone density change compared to the control group at the first and second month postoperatively (p < 0.01). WBV only significantly increased the bone density compared to the control group at the second month after the surgery (p < 0.01). Conclusions: Application of LIPUS and WBV may enhance the regeneration of mandibular bone defects in rats. Although LIPUS and WBV are effective in mandibular bone healing, the effects of LIPUS are faster and greater than WBV.


Author(s):  
José Antonio Mingorance ◽  
Pedro Montoya ◽  
José García Vivas Miranda ◽  
Inmaculada Riquelme

Whole body vibration has been proven to improve the health status of patients with fibromyalgia, providing an activation of the neuromuscular spindles, which are responsible for muscle contraction. The present study aimed to compare the effectiveness of two types of whole body vibrating platforms (vertical and rotational) during a 12-week training program. Sixty fibromyalgia patients (90% were women) were randomly assigned to one of the following groups: group A (n = 20), who performed the vibration training with a vertical platform; group B (n = 20), who did rotational platform training; or a control group C (n = 20), who did not do any training. Sensitivity measures (pressure pain and vibration thresholds), quality of life (Quality of Life Index), motor function tasks (Berg Scale, six-minute walking test, isometric back muscle strength), and static and dynamic balance (Romberg test and gait analysis) were assessed before, immediately after, and three months after the therapy program. Although both types of vibration appeared to have beneficial effects with respect to the control group, the training was more effective with the rotational than with vertical platform in some parameters, such as vibration thresholds (p < 0.001), motor function tasks (p < 0.001), mediolateral sway (p < 0.001), and gait speed (p < 0.05). Nevertheless, improvements disappeared in the follow-up in both types of vibration. Our study points out greater benefits with the use of rotational rather than vertical whole body vibration. The use of the rotational modality is recommended in the standard therapy program for patients with fibromyalgia. Due to the fact that the positive effects of both types of vibration disappeared during the follow-up, continuous or intermittent use is recommended.


2019 ◽  
Vol 18 (1) ◽  
pp. 73-80
Author(s):  
Luanda Alves Xavier Ramos ◽  
François Talles Medeiros Rodrigues ◽  
Lívia Shirahige ◽  
Maria de Fátima Alcântara Barros ◽  
Antônio Geraldo Cidrão de Carvalho ◽  
...  

Author(s):  
Anna L.J. Verhulst ◽  
Hans H.C.M. Savelberg ◽  
Gerard Vreugdenhil ◽  
Massimo Mischi ◽  
Goof Schep

The objective was to study the effect of whole-body vibration (WBV) on strength, balance and pain in patients with peripheral neuropathies and to consider its significance for the rehabilitation of patients suffering from chemotherapy-induced peripheral neuropathy (CIPN). Using a broad search strategy, PubMed was searched for clinical trials on WBV interventions aimed at improving strength, balance or pain in patients with peripheral neuropathies, which were published in English until 5th June 2014. The search was performed by the first author and generated a total of 505 results, which yielded 5 articles that met the inclusion criteria, being studies: i) published in English; ii) involving adult human subjects’ peripheral neuropathies; iii) evaluating the effect of WBV as a therapeutic intervention; and iv) reporting findings for at least one of the following outcomes: strength, balance or pain. Methodological quality of included studies was assessed independently by first and second author, using the physiotherapy evidence database scale. The overall methodological quality of included studies was low. Two studies found a beneficial effect of WBV on neuropathic pain, but another study failed to find the same effect. One study found significant improvements in both muscle strength and balance, while another study found improvements only in some, but not all, of the applied tests to measure muscle strength and balance. The results of this literature search suggest insufficient evidence to assess the effectiveness for the effects of WBV on neuropathic pain, muscle strength and balance in patients with peripheral neuropathies. More high-quality trials are needed to guide the optimization of rehabilitation programs for cancer survivors with CIPN in particular.


2013 ◽  
Vol 109 (11) ◽  
pp. 2705-2711 ◽  
Author(s):  
M. Bączyk ◽  
A. Hałuszka ◽  
W. Mrówczyński ◽  
J. Celichowski ◽  
P. Krutki

The study aimed at determining the influence of a whole body vibration (WBV) on electrophysiological properties of spinal motoneurons. The WBV training was performed on adult male Wistar rats, 5 days a week, for 5 wk, and each daily session consisted of four 30-s runs of vibration at 50 Hz. Motoneuron properties were investigated intracellularly during experiments on deeply anesthetized animals. The experimental group subjected to the WBV consisted of seven rats, and the control group of nine rats. The WBV treatment induced no significant changes in the passive membrane properties of motoneurons. However, the WBV-evoked adaptations in excitability and firing properties were observed, and they were limited to fast-type motoneurons. A significant decrease in rheobase current and a decrease in the minimum and the maximum currents required to evoke steady-state firing in motoneurons were revealed. These changes resulted in a leftward shift of the frequency-current relationship, combined with an increase in slope of this curve. The functional relevance of the described adaptive changes is the ability of fast motoneurons of rats subjected to the WBV to produce series of action potentials at higher frequencies in a response to the same intensity of activation. Previous studies proved that WBV induces changes in the contractile parameters predominantly of fast motor units (MUs). The data obtained in our experiment shed a new light to possible explanation of these results, suggesting that neuronal factors also play a substantial role in MU adaptation.


Sign in / Sign up

Export Citation Format

Share Document