scholarly journals Investigating the Effect of Uncertainty Characteristics of Renewable Energy Resources on Power System Flexibility

2021 ◽  
Vol 11 (12) ◽  
pp. 5381
Author(s):  
Changgi Min

This study investigates the effect of uncertainty characteristics of renewable energy resources on the flexibility of a power system. The more renewable energy resources introduced, the greater the imbalance between load and generation. Securing the flexibility of the system is becoming important to manage this situation. The degree of flexibility cannot be independent of the uncertainty of the power system. However, most existing studies on flexibility have not explicitly considered the effects of uncertainty characteristics. Therefore, this study proposes a method to quantitatively analyze the effect of uncertainty characteristics on power system flexibility. Here, the uncertainties of the power system indicate the net load forecast error, which can be represented as a probability distribution. Of the characteristics of the net load forecast error, skewness and kurtosis were considered. The net load forecast error was modeled with a Pearson distribution, which has been widely used to generate the probability density function with skewness and kurtosis. Scenarios for the forecast net load, skewness, and kurtosis were generated, and their effects on flexibility were evaluated. The simulation results for the scenarios based on a modified IEEE-RTS-96 revealed that skewness is more effective than kurtosis. The proposed method can help system operators to efficiently respond to changes in the uncertainty characteristics of renewable energy resources.

2019 ◽  
Vol 9 (3) ◽  
pp. 561 ◽  
Author(s):  
Chang-Gi Min

This study investigates the impact of variability and uncertainty on the flexibility of a power system. The variability and uncertainty make it harder to maintain the balance between load and generation. However, most existing studies on flexibility evaluation have not distinguished between the effects of variability and uncertainty. The countermeasures to address variability and uncertainty differ; thus, applying strategies individually tailored to variability and uncertainty is helpful for more efficient operation and planning of a power system. The first contribution of this study is in separating the variability and uncertainty, and determining which is more influential in terms of flexibility in specific system situations. A flexibility index, named the ramping capability shortage probability (RSP), is used to quantify the extent to which the variability and uncertainty affect the flexibility. The second contribution is to generate various scenarios for variability and uncertainty based on a modified IEEE-RTS-96, to evaluate the flexibility. The penetration level of renewable energy resources is kept the same in each scenario. The results of a sensitivity analysis show that variability is more effective than uncertainty for high and medium net loads.


2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


2019 ◽  
Vol 11 (23) ◽  
pp. 6550 ◽  
Author(s):  
Mohamed ◽  
Ali ◽  
Alkhalaf ◽  
Senjyu ◽  
Hemeida

This article offers a multi-objective framework for an optimal mix of different types of distributed energy resources (DERs) under different load models. Many renewable and non-renewable energy resources like photovoltaic system (PV), micro-turbine (MT), fuel cell (FC), and wind turbine system (WT) are incorporated in a grid-connected hybrid power system to supply energy demand. The main aim of this article is to maximize environmental, technical, and economic benefits by minimizing various objective functions such as the annual cost, power loss and greenhouse gas emission subject to different power system constraints and uncertainty of renewable energy sources. For each load model, optimum DER size and its corresponding location are calculated. To test the feasibility and validation of the multi-objective water cycle algorithm (MOWCA) is conducted on the IEEE-33 bus and IEEE-69 bus network. The concept of Pareto-optimality is applied to generate trilateral surface of non-dominant Pareto-optimal set followed by a fuzzy decision-making mechanism to obtain the final compromise solution. Multi-objective non-dominated sorting genetic (NSGA-III) algorithm is also implemented and the simulation results between two algorithms are compared with each other. The achieved simulation results evidence the better performance of MOWCA comparing with the NSGA-III algorithm and at different load models, the determined DER locations and size are always righteous for enhancement of the distribution power system performance parameters.


2019 ◽  
Vol 2019 (18) ◽  
pp. 5308-5313 ◽  
Author(s):  
Temitope Adefarati ◽  
Ramesh C. Bansal

2018 ◽  
Vol 13 (1) ◽  
pp. 61 ◽  
Author(s):  
Nasser Hosseinzadeh ◽  
A. Al Shereiqi ◽  
M. Albadi ◽  
Amer Al-Hinai

 This paper investigates the possibility of constructing multi-microgrids by interlinking the rural area systems in the Al Wusta governorate of the Sultanate of Oman, which are currently being supplied by diesel generators. It is proposed to enhance the rural system under study by switching off small diesel stations and replacing them with wind turbines. The microgrids formed in this way are then interlinked together to create multi-microgrids. The paper studies the interlinked multi-microgrids under different scenarios; in terms of voltage profiles and power flow using the ETAP software package. This study contributes to the feasibility study of retiring some diesel power plants and using renewable energy resources in rural Oman.


Sign in / Sign up

Export Citation Format

Share Document