scholarly journals Optimal Allocation of Hybrid Renewable Energy System by Multi-Objective Water Cycle Algorithm

2019 ◽  
Vol 11 (23) ◽  
pp. 6550 ◽  
Author(s):  
Mohamed ◽  
Ali ◽  
Alkhalaf ◽  
Senjyu ◽  
Hemeida

This article offers a multi-objective framework for an optimal mix of different types of distributed energy resources (DERs) under different load models. Many renewable and non-renewable energy resources like photovoltaic system (PV), micro-turbine (MT), fuel cell (FC), and wind turbine system (WT) are incorporated in a grid-connected hybrid power system to supply energy demand. The main aim of this article is to maximize environmental, technical, and economic benefits by minimizing various objective functions such as the annual cost, power loss and greenhouse gas emission subject to different power system constraints and uncertainty of renewable energy sources. For each load model, optimum DER size and its corresponding location are calculated. To test the feasibility and validation of the multi-objective water cycle algorithm (MOWCA) is conducted on the IEEE-33 bus and IEEE-69 bus network. The concept of Pareto-optimality is applied to generate trilateral surface of non-dominant Pareto-optimal set followed by a fuzzy decision-making mechanism to obtain the final compromise solution. Multi-objective non-dominated sorting genetic (NSGA-III) algorithm is also implemented and the simulation results between two algorithms are compared with each other. The achieved simulation results evidence the better performance of MOWCA comparing with the NSGA-III algorithm and at different load models, the determined DER locations and size are always righteous for enhancement of the distribution power system performance parameters.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5800
Author(s):  
Ayat Ali Saleh ◽  
Tomonobu Senjyu ◽  
Salem Alkhalaf ◽  
Majed A. Alotaibi ◽  
Ashraf M. Hemeida

This work introduces multi-objective water cycle algorithm (MOWCA) to find the accurate location and size of distributed energy resource (DERs) considering different load models for two seasons (winter, and summer). The impact of uncertainties produced from load and renewable energy resource (RES) such as wind turbine (WT) and photovoltaic (PV) on the performance of the radial distribution system (RDS) are covered as this is closer to the real operation condition. The point estimate method (PEM) is applied for modeling the RES uncertainties. An optimization technique is implemented to find the multi-objective optimal allocation of RESs in RDSs considering uncertainty effect. The main objectives of the work are to maximize the technical, economic and environmental benefits by minimizing different objective functions such as the dissipated power, the voltage deviation, DG cost and total emissions. The proposed multi-objective model is solved by using multi-objective water cycle algorithm (MOWCA), considering the Pareto criterion with nonlinear sorting based on fuzzy mechanism. The proposed algorithm is carried out on different IEEE power systems with various cases.


2021 ◽  
Vol 11 (12) ◽  
pp. 5381
Author(s):  
Changgi Min

This study investigates the effect of uncertainty characteristics of renewable energy resources on the flexibility of a power system. The more renewable energy resources introduced, the greater the imbalance between load and generation. Securing the flexibility of the system is becoming important to manage this situation. The degree of flexibility cannot be independent of the uncertainty of the power system. However, most existing studies on flexibility have not explicitly considered the effects of uncertainty characteristics. Therefore, this study proposes a method to quantitatively analyze the effect of uncertainty characteristics on power system flexibility. Here, the uncertainties of the power system indicate the net load forecast error, which can be represented as a probability distribution. Of the characteristics of the net load forecast error, skewness and kurtosis were considered. The net load forecast error was modeled with a Pearson distribution, which has been widely used to generate the probability density function with skewness and kurtosis. Scenarios for the forecast net load, skewness, and kurtosis were generated, and their effects on flexibility were evaluated. The simulation results for the scenarios based on a modified IEEE-RTS-96 revealed that skewness is more effective than kurtosis. The proposed method can help system operators to efficiently respond to changes in the uncertainty characteristics of renewable energy resources.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 403
Author(s):  
Deyaa Ahmed ◽  
Mohamed Ebeed ◽  
Abdelfatah Ali ◽  
Ali S. Alghamdi ◽  
Salah Kamel

Optimal inclusion of a photovoltaic system and wind energy resources in electrical grids is a strenuous task due to the continuous variation of their output powers and stochastic nature. Thus, it is mandatory to consider the variations of the Renewable energy resources (RERs) for efficient energy management in the electric system. The aim of the paper is to solve the energy management of a micro-grid (MG) connected to the main power system considering the variations of load demand, photovoltaic (PV), and wind turbine (WT) under deterministic and probabilistic conditions. The energy management problem is solved using an efficient algorithm, namely equilibrium optimizer (EO), for a multi-objective function which includes cost minimization, voltage profile improvement, and voltage stability improvement. The simulation results reveal that the optimal installation of a grid-connected PV unit and WT can considerably reduce the total cost and enhance system performance. In addition to that, EO is superior to both whale optimization algorithm (WOA) and sine cosine algorithm (SCA) in terms of the reported objective function.


2019 ◽  
Vol 11 (16) ◽  
pp. 4424 ◽  
Author(s):  
Chunning Na ◽  
Huan Pan ◽  
Yuhong Zhu ◽  
Jiahai Yuan ◽  
Lixia Ding ◽  
...  

At present time, China’s power systems face significant challenges in integrating large-scale renewable energy and reducing the curtailed renewable energy. In order to avoid the curtailment of renewable energy, the power systems need significant flexibility requirements in China. In regions where coal is still heavily relied upon for generating electricity, the flexible operations of coal power units will be the most feasible option to face these challenges. The study first focused on the reasons why the flexible operation of existing coal power units would potentially promote the integration of renewable energy in China and then reviewed the impacts on the performance levels of the units. A simple flexibility operation model was constructed to estimate the integration potential with the existing coal power units under several different scenarios. This study’s simulation results revealed that the existing retrofitted coal power units could provide flexibility in the promotion of the integration of renewable energy in a certain extent. However, the integration potential increment of 20% of the rated power for the coal power units was found to be lower than that of 30% of the rated power. Therefore, by considering the performance impacts of the coal power units with low performances in load operations, it was considered to not be economical for those units to operate at lower than 30% of the rated power. It was believed that once the capacity share of the renewable energy had achieved a continuously growing trend, the existing coal power units would fail to meet the flexibility requirements. Therefore, it was recommended in this study that other flexible resources should be deployed in the power systems for the purpose of reducing the curtailment of renewable energy. Furthermore, based on this study’s obtained evidence, in order to realize a power system with high proportions of renewable energy, China should strive to establish a power system with adequate flexible resources in the future.


Sign in / Sign up

Export Citation Format

Share Document