scholarly journals Al2O3 Preforms Infiltrated with Poly(methyl methacrylate) for Dental Prosthesis Manufacturing

2021 ◽  
Vol 11 (16) ◽  
pp. 7583
Author(s):  
Olimpia Crispim da Silveira ◽  
Alisson Mendes Rodrigues ◽  
Maziar Montazerian ◽  
Hélio de Lucena Lira ◽  
Francesco Baino ◽  
...  

The combination of biocompatible polymers and ceramics shows great promise in the development of composites with suitable mechanical properties for dental applications. In an attempt to further expand this research line, Al2O3 commercial powders (Vitro-ceram, Alglass, In-ceram) were sintered at 1400 °C for 2 h and infiltrated with poly(methyl methacrylate) for potential use in dental prostheses. The infiltration was performed using a homemade apparatus under a pressure of 7 bar for 6 and 12 h. The microstructure (studied using a scanning electron microscope), Archimedes density, 3-point bending flexural strength and Vickers hardness of the prepared composites were assessed and quantitatively compared. In general, microstructural analyses showed ceramic- and polymer-based interpenetrating network in all materials. The preforms infiltrated for 12 h showed superior properties; among them, the Vitro-ceram-based composite also demonstrated a near-zero open porosity and optimum mechanical characteristics. Specifically, its density, strength and hardness were 2.6 ± 0.07 g/cm3, 119.3 ± 5.0 MPa and 1055.1 ± 111.0 HV, respectively, passing the acceptance criteria of ISO 6872 and making it suitable for consideration as a metal-free structure for dental crowns and fixed partial prostheses until three anterior units.

2020 ◽  
Vol 10 (11) ◽  
pp. 4007 ◽  
Author(s):  
Flores-Arriaga Juan Carlos ◽  
García-Contreras Rene ◽  
Villanueva-Sánchez Germán ◽  
Acosta-Torres Laura Susana

Poly(methyl methacrylate) (PMMA) is a widely used polymer for dental applications, and it is mainly used in the fabrication of dental prostheses. In an increasing number of these applications, the risk of suffering bacterial or fungal infection is higher than 60% among oral-prosthesis users. Some authors have reported the failure of other implants in the human body due to biofilm formation on the surface (mainly for total hip implants). In the dental field, the formation of bacterial and fungal biofilms on prosthesis’s surface is the etiologic factor for stomatitis, mainly caused by Candida albicans and bacteria such as Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis, as well as many others. The antibacterial and antifungal properties of silver nanoparticles (AgNPs) have been widely reported, and their use in dental materials can prevent oral infections, such as candidiasis and stomatitis, and promote better oral health in dental-prosthesis users. They can even be used in other biomedical applications that require controlling biofilm formation on surfaces. In this review, the reported studies that use composites of PMMA and AgNPs (PMMA-AgNPs) for dental applications are listed and checked, with the aim of gaining a wider perspective of the use and application of this approach in the dental field.


2021 ◽  
Vol 22 (3) ◽  
pp. 1441
Author(s):  
Antonio Scarano ◽  
Tiziana Orsini ◽  
Fabio Di Carlo ◽  
Luca Valbonetti ◽  
Felice Lorusso

Background—the graphene-doping procedure represents a useful procedure to improve the mechanical, physical and biological response of several Polymethyl methacrylate (PMMA)-derived polymers and biomaterials for dental applications. The aim of this study was to evaluate osseointegration of Graphene doped Poly(methyl methacrylate) (GD-PMMA) compared with PMMA as potential materials for dental implant devices. Methods—eighteen adult New Zealand white male rabbits with a mean weight of approx. 3000 g were used in this research. A total of eighteen implants of 3.5 mm diameter and 11 mm length in GD-PMMA and eighteen implants in PMMA were used. The implants were placed into the articular femoral knee joint. The animals were sacrificed after 15, 30 and 60 days and the specimens were evaluated by µCT and histomorphometry. Results—microscopically, all 36 implants, 18 in PMMA and 18 in DG-PMMA were well-integrated into the bone. The implants were in contact with cortical bone along the upper threads, while the lower threads were in contact with either newly formed bone or with marrow spaces. The histomorphometry and µCT evaluation showed that the GP-PMMA and PMMA implants were well osseointegrated and the bone was in direct contact with large portions of the implant surfaces, including the space in the medullary canal. Conclusions—in conclusion, the results suggest that GD-PMMA titanium surfaces enhance osseointegration in rabbit femurs. This encourages further research to obtain GD-PMMA with a greater radiopacity. Also, further in vitro and vivo animal studies are necessary to evaluate a potential clinical usage for dental implant applications.


2013 ◽  
Vol 131 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Mohammad Zuber ◽  
Shazia Tabasum ◽  
Tahir Jamil ◽  
Muhammad Shahid ◽  
Rizwan Hussain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document