scholarly journals Analysis of the Main Anthropogenic Sources’ Contribution to Pollutant Emissions in the Lazio Region, Italy

2021 ◽  
Vol 11 (17) ◽  
pp. 7936
Author(s):  
Gabriele Battista ◽  
Emanuele de Lieto Vollaro ◽  
Roberto de Lieto Vollaro

Most cities worldwide suffer from serious air-quality problems, which have received increasing attention in the past decade. The most probable reason for the air-quality problems is the urban population growth, combined with a change in land use due to increasing urban areas. The emission of air pollutants is caused by different anthropogenic processes which can be categorized into the sources of urban traffic, industry, and domestic heating. Dispersion and dilution of air pollutants are strongly influenced by meteorological conditions, especially by wind direction, wind speed, turbulence, and atmospheric stability. With an increasing number of people living in cities, there is the need to examine the correlation between air pollution, local climate, and the effects these changes have on global climate. New interdisciplinary research studies are needed to increase our understanding of the interactions among these aspects. The aim is to analyze the pollutant condition in Rome and the other provinces of the Lazio region with qualitative and quantitative analysis, in order to understand which are the main pollutant sources and what is the correlation of habits of the population on air pollutant emissions.

Author(s):  
Alexandra Viana Silva ◽  
Cristina M. Oliveira ◽  
Nuno Canha ◽  
Ana Isabel Miranda ◽  
Susana Marta Almeida

Understanding air pollution in urban areas is crucial to identify mitigation actions that may improve air quality and, consequently, minimize human exposure to air pollutants and their impact. This study aimed to assess the temporal evolution of the air quality in the city of Setúbal (Portugal) during a time period of 10 years (2003–2012), by evaluating seasonal trends of air pollutants (PM10, PM2.5, O3, NO, NO2 and NOx) measured in nine monitoring stations. In order to identify emission sources of particulate matter, PM2.5 and PM2.5–10 were characterized in two different areas (urban traffic and industrial) in winter and summer and, afterwards, source apportionment was performed by means of Positive Matrix Factorization. Overall, the air quality has been improving over the years with a decreasing trend of air pollutant concentration, with the exception of O3. Despite this improvement, levels of PM10, O3 and nitrogen oxides still do not fully comply with the requirements of European legislation, as well as with the guideline values of the World Health Organization (WHO). The main anthropogenic sources contributing to local PM levels were traffic, industry and wood burning, which should be addressed by specific mitigation measures in order to minimize their impact on the local air quality.


2020 ◽  
Author(s):  
Yumi Kim

<p><span><span>Along with the development of new cities, the construction of LNG cogeneration plant in urban areas is being promoted, and the facility has been pointed out as one of the major air pollution sources along with many vehicles in urban areas. For example, the construction of a new administrative city in Korea has led to the relocation of major government buildings and the influx of more than 300,000 people. The city has a 530 MW power plant + 391 Gcal/h district heating facility. The facility released 294,835 kg and 325,381 kg of NOx annually in 2017 and 2018, respectively. When examining the impact, we analyzed the impact of air pollutants (PM<sub>2.5</sub>, O<sub>3</sub>, NO<sub>2</sub>, etc.) through CMAQ modeling. In addition, the impact prediction using AERMOD related to the release of carcinogenic air pollutants is estimated to be no more than 10<sup>-5</sup> (risk level), but measurement and verification are required. In addition to concentration-based risk assessments, health impact assessments are needed that consider the number of populations exposed. In this study, QGIS was used to calculate population. In conclusion, even if the same LNG power plant is constructed, the LNG cogeneration plant located adjacent to a large residential facility requires air pollutant management measures according to the exposure population by radius of influence</span></span></p><p> </p>


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 449 ◽  
Author(s):  
Agapol Junpen ◽  
Jirataya Pansuk ◽  
Orachorn Kamnoet ◽  
Penwadee Cheewaphongphan ◽  
Savitri Garivait

Crop residue burning negatively impacts both the environment and human health, whether in the aspect of air pollution, regional and global climate change, or transboundary air pollution. Accordingly, this study aims to assess the level of air pollutant emissions caused by the rice residue open burning activities in 2018, by analyzing the remote sensing information and country specific data. This research also aims to analyze the trend of particulate matter 10 microns or less in diameter (PM10) concentration air quality sites in provinces with large paddy rice planting areas from 2010–2017. According to the results, 61.87 megaton (Mt) of rice residue were generated, comprising 21.35 Mt generated from the irrigated fields and 40.53 Mt generated from the rain-fed field. Only 23.0% of the total rice residue generated were subject to open burning—of which nearly 32% were actually burned in the fields. The emissions from such rice residue burning consisted of: 5.34 ± 2.33 megaton (Mt) of CO2, 44 ± 14 kiloton (kt) of CH4, 422 ± 179 kt of CO, 2 ± 2 kt of NOX, 2 ± 2 kt of SO2, 38 ± 22 kt of PM2.5, 43 ± 29 kt of PM10, 2 ± 1 kt of black carbon (BC), and 14 ± 5 kt of organic carbon (OC). According to the air quality trends, the results shows the higher level of PM10 concentration was due to the agricultural burning activities, as reflected in the higher monthly averages of the months with the agricultural burning, by around 1.9–2.1 times. The result also shows the effect of government’s policy for farmers on the crop burning activities and air quality trends.


2021 ◽  
Vol 21 (11) ◽  
pp. 8693-8708
Author(s):  
Zhe Jiang ◽  
Hongrong Shi ◽  
Bin Zhao ◽  
Yu Gu ◽  
Yifang Zhu ◽  
...  

Abstract. In response to the coronavirus disease of 2019 (COVID-19), California issued statewide stay-at-home orders, bringing about abrupt and dramatic reductions in air pollutant emissions. This crisis offers us an unprecedented opportunity to evaluate the effectiveness of emission reductions in terms of air quality. Here we use the Weather Research and Forecasting model with Chemistry (WRF-Chem) in combination with surface observations to study the impact of the COVID-19 lockdown measures on air quality in southern California. Based on activity level statistics and satellite observations, we estimate the sectoral emission changes during the lockdown. Due to the reduced emissions, the population-weighted concentrations of fine particulate matter (PM2.5) decrease by 15 % in southern California. The emission reductions contribute 68 % of the PM2.5 concentration decrease before and after the lockdown, while meteorology variations contribute the remaining 32 %. Among all chemical compositions, the PM2.5 concentration decrease due to emission reductions is dominated by nitrate and primary components. For O3 concentrations, the emission reductions cause a decrease in rural areas but an increase in urban areas; the increase can be offset by a 70 % emission reduction in anthropogenic volatile organic compounds (VOCs). These findings suggest that a strengthened control on primary PM2.5 emissions and a well-balanced control on nitrogen oxides and VOC emissions are needed to effectively and sustainably alleviate PM2.5 and O3 pollution in southern California.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2545 ◽  
Author(s):  
Zhipeng Zhu ◽  
Guangyu Wang ◽  
Jianwen Dong

Land use changes have significantly altered the natural environment in which humans live. In urban areas, diminishing air quality poses a large threat to human health. In order to investigate the relationship between land use/cover change (LUCC) and air pollutants of Wuyishan City between 2014–2017, an integrated approach was used by combining remote sensing techniques with a landscape ecology methods. Annual, seasonal, and weekly mean values of air pollutant (SO2, NO2, CO, PM10, O3, PM2.5, black carbon) concentration and atmospheric visibility were calculated to develop a Pearson correlation between LUCC and air pollutants concentration. Results showed an increase in forested areas (1.79%) and water areas (15.89%), with a simultaneous reduction in cultivated land (6.47%), bare land (72.61%), and built-up land (16.03%) from 2014 to 2017. The transition matrix of land use types revealed that (i) forest expansion took place mainly at the expense of cultivated land (13.94%) and bare land (27.48%); and (ii) water area expansion took place mainly at the expense of cultivated land (1.29%) and forests (0.21%). In 2017, the proportion of days with AQI level I (94.52%) was higher than that in 2014 (88.77%). Additionally, the annual average visibility in 2017 (37.42 km) was higher than 2014 (27.46 km). The concentration of SO2, CO, O3, and black carbon was positively correlated with the cultivated land. The concentration of SO2, CO, and black carbon negatively correlated with the increase of forests. PM10, and PM2.5 is negatively correlated with the water area. Visibility was found to be positively correlated with forested area, and negatively correlated with cultivated land. The findings from this study represent a valuable gain in understanding of policies aimed at improving, safeguarding, and monitoring air quality. These results can be used to inform land-use planning decisions in a comprehensive way and could be a valuable tool for LUCC rational management strategies.


2020 ◽  
Author(s):  
Zhe Jiang ◽  
Hongrong Shi ◽  
Bin Zhao ◽  
Yu Gu ◽  
Yifang Zhu ◽  
...  

Abstract. In response to the Coronavirus Disease 2019 (COVID-19), California issued statewide stay-at-home orders, bringing about abrupt and dramatic reductions in air pollutant emissions. This crisis offers us an unprecedented opportunity to evaluate the effectiveness of emission reductions on air quality. Here we use the Weather Research and Forecasting model with Chemistry (WRF-Chem) in combination with surface observations to study the impact of the COVID-19 lockdown measures on air quality in southern California. Based on activity level statistics and satellite observations, we estimate the sectoral emission changes during the lockdown. Due to the reduced emissions, the population-weighted concentrations of fine particulate matter (PM2.5) decrease by 15 % in southern California. The emission reductions contribute 68 % of the PM2.5 concentration decrease before and after the lockdown, while meteorology variations contribute the remaining 32 %. Among all chemical compositions, the PM2.5 concentration decrease due to emission reductions is dominated by nitrate and primary components. For O3 concentrations, the emission reductions cause a decrease in rural areas but an increase in urban areas; the increase can be offset by a 70 % emission reduction in anthropogenic volatile organic compounds (VOC). These findings suggest that a strengthened control on primary PM2.5 emissions and a well-balanced control on nitrogen oxides and VOC emissions are needed to effectively and sustainably alleviate PM2.5 and O3 pollution in southern California.


2011 ◽  
Vol 4 (2) ◽  
pp. 287-297 ◽  
Author(s):  
D. H. Loughlin ◽  
W. G. Benjey ◽  
C. G. Nolte

Abstract. This article presents a methodology for creating anthropogenic emission inventories that can be used to simulate future regional air quality. The Emission Scenario Projection (ESP) methodology focuses on energy production and use, the principal sources of many air pollutants. Emission growth factors for energy system categories are calculated using the MARKAL energy system model. Growth factors for non-energy sectors are based on economic and population projections. These factors are used to grow a 2005 emissions inventory through 2050. The approach is demonstrated for two emission scenarios for the United States. Scenario 1 extends current air regulations through 2050, while Scenario 2 adds a hypothetical CO2 mitigation policy. Although both scenarios show significant reductions in air pollutant emissions through time, these reductions are more pronounced in Scenario 2, where the CO2 policy results in the adoption of technologies with lower emissions of both CO2 and traditional air pollutants. The methodology is expected to play an important role within an integrated modeling framework that supports the US EPA's investigations of linkages among emission drivers, climate and air quality.


2018 ◽  
Author(s):  
Xiaohui Zhang ◽  
Yan Lu ◽  
Qin'geng Wang ◽  
Xin Qian

Abstract. Crop residue burning is an important source of air pollutants and strongly affects the regional air quality and global climate change. This study presents a detailed emission inventory of major air pollutants from crop residue burning for the year of 2014 in China. Activity data were investigated for 296 prefecture-level cities, and emissions were firstly estimated for each city and then redistributed using 1-km resolution land use data. Temporal variation was determined according to the farming practice in different regions. The MODIS fire product was applied to verify the spatial and temporal variations of the inventory. Results indicates that the total emissions of BC, OC, PM2.5, PM10, SO2, NOX, NH3, CH4, NMVOC, CO and CO2 from crop residue burning (including open and household fuel burnings) were estimated to be 0.16, 0.82, 2.30, 2.66, 0.09, 0.70, 0.14, 0.81, 1.70, 13.70 and 309.04 Tg, respectively. Rice, wheat and corn were the three major contributors, but their relative contributions varied with region and season. High emissions were generally located in the eastern China, central China and northeastern China, and temporally peaking in June and October relating with harvesting time. The spatially and temporal distributions agree well with the fire pixel counts from MODIS. Uncertainties were estimated using the Monte Carlo method. This study provides a useful basis for air quality modeling and the policy making of pollution control strategies.


2020 ◽  
Vol 18 (14) ◽  
Author(s):  
Oliver Hoon Leh Ling ◽  
Marlyana Azyyati Marzukhi ◽  
Jie Kwong Qi ◽  
Nurul Ashikin Mabahwi

Ambient air in the urban area normally is more polluted than less developed areas. This is due to the concentration of urban activities, such as industrial, transportations and commercial or business activities. A study about the impact of urban land uses and activities on the levels of air pollutants in Malaysia’s most urbanised and most developed region that is Klang Valley was conducted. Data of Air Pollutant Index (API) and average concentration of selected air pollutants were used to analyse the ambient air quality of the selected five (5) cities or towns in Klang Valley. The air quality condition of the five (5) cities or towns were related to the land use distributions of the cities or towns with a purpose to understand the impact of land uses on the ambient air quality. Furthermore, the changes of ambient air quality before and after Movement Control Order (MCO) were analysed to examine the impact of human activity changes on the ambient air quality. The study found that a city or a town with more industrial and transportation land uses with fewer greens was more polluted than the area with less industrial and transportation land uses with more greens. However, this finding did not apply to all areas due to effect of winds on the distribution of air pollutants. Besides that, because of MCO, most people stayed at home with the mode of “work from home” that caused air pollutant levels in urban areas to decrease due to less urban activities. Nevertheless, there was a risk of an increase in air pollution levels in residential areas due to the concentration of activities, especially driving motor vehicles in residential areas. A recommendation is given to encourage “work from home” and reduce dependency on auto-mobile in residential areas in order to improve the air quality in urban areas.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd6696
Author(s):  
Zongbo Shi ◽  
Congbo Song ◽  
Bowen Liu ◽  
Gongda Lu ◽  
Jingsha Xu ◽  
...  

The COVID-19 lockdowns led to major reductions in air pollutant emissions. Here, we quantitatively evaluate changes in ambient NO2, O3, and PM2.5 concentrations arising from these emission changes in 11 cities globally by applying a deweathering machine learning technique. Sudden decreases in deweathered NO2 concentrations and increases in O3 were observed in almost all cities. However, the decline in NO2 concentrations attributable to the lockdowns was not as large as expected, at reductions of 10 to 50%. Accordingly, O3 increased by 2 to 30% (except for London), the total gaseous oxidant (Ox = NO2 + O3) showed limited change, and PM2.5 concentrations decreased in most cities studied but increased in London and Paris. Our results demonstrate the need for a sophisticated analysis to quantify air quality impacts of interventions and indicate that true air quality improvements were notably more limited than some earlier reports or observational data suggested.


Sign in / Sign up

Export Citation Format

Share Document