scholarly journals Spatial—Temporal Traffic Flow Data Restoration and Prediction Method Based on the Tensor Decomposition

2021 ◽  
Vol 11 (19) ◽  
pp. 9220
Author(s):  
Jiahe Yan ◽  
Honghui Li ◽  
Yanhui Bai ◽  
Yingli Lin

As an important part of urban big data, traffic flow data play a critical role in traffic management and emergency response. Traffic flow data contain multi-mode characteristics, which need to be deeply mined. To make full use of multi-mode characteristics, we use a 3-order tensor to represent the traffic flow data, considering “temporal-spatial-periodic” characteristics. To recover the missing data of traffic flow, we propose the Missing Data Completion Algorithm Based on Residual Value Tensor Decomposition (MDCA-RVTD), which combines linear regression, univariate spline, and CP decomposition. Then, we predict the future traffic flow data by using the proposed Traffic Flow Prediction Algorithm Based on Data Completion Strategy (TFPA-DCS). The experimental results show that recovering the missing data is helpful in improving the prediction accuracy. Additionally, the prediction accuracy of the proposed Algorithm is better than gray model and traditional tensor CP decomposition method.

2020 ◽  
Vol 54 (2) ◽  
pp. 59-73
Author(s):  
Yang Wang ◽  
Yu Xiao ◽  
Jianhui Lai ◽  
Yanyan Chen

Traffic flow is one of the fundamental parameters for traffic analysis and planning. With the rapid development of intelligent transportation systems, a large number of various detectors have been deployed in urban roads and, consequently, huge amount of data relating to the traffic flow are accumulatively available now. However, the traffic flow data detected through various detectors are often degraded due to the presence of a number of missing data, which can even lead to erroneous analysis and decision if no appropriate process is carried out. To remedy this issue, great research efforts have been made and subsequently various imputation techniques have been successively proposed in recent years, among which the k nearest neighbour algorithm (kNN) has received a great popularity as it is easy to implement and impute the missing data effectively. In the work presented in this paper, we firstly analyse the stochastic effect of traffic flow, to which the suffering of the kNN algorithm can be attributed. This motivates us to make an improvement, while eliminating the requirement to predefine parameters. Such a parameter-free algorithm has been realized by introducing a new similarity metric which is combined with the conventional metric so as to avoid the parameter setting, which is often determined with the requirement of adequate domain knowledge. Unlike the conventional version of the kNN algorithm, the proposed algorithm employs the multivariate linear regression model to estimate the weights for the final output, based on a set of data, which is smoothed by a Wavelet technique. A series of experiments have been performed, based on a set of traffic flow data reported from serval different countries, to examine the adaptive determination of parameters and the smoothing effect. Additional experiments have been conducted to evaluate the competent performance for the proposed algorithm by comparing to a number of widely-used imputing algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hui Jiang ◽  
Hongxing Deng

Traffic flow data is the basis of traffic management, planning, control, and other forms of implementation. Once missing, it will directly affect the monitoring and prediction of expressway traffic status. Regarding this, this paper proposes a repair method for the traffic flow missing data of expressway, combined with the idea of coupled matrix-tensor factorizations (CMTF), to couple the auxiliary traffic flow data into the main traffic flow data and to construct the coupling matrix-tensor expression of traffic flow data, and the alternating direction multiplier algorithm is used to realize the repair of missing traffic flow data. Combined with the measured data of expressway traffic flow, the experimental results show that, under different missing data types and missing rates, the proposed method outperforms the methods lacking auxiliary traffic flow data and achieves a good repair effect, especially for high miss data rates.


2021 ◽  
Vol 11 (2) ◽  
pp. 143-151
Author(s):  
Feng Yu ◽  
◽  
Jinglong Fang ◽  
Bin Chen ◽  
Yanli Shao

Traffic flow prediction is very important for smooth road conditions in cities and convenient travel for residents. With the explosive growth of traffic flow data size, traditional machine learning algorithms cannot fit large-scale training data effectively and the deep learning algorithms do not work well because of the huge training and update costs, and the prediction accuracy may need to be further improved when an emergency affecting traffic occurs. In this study, an incremental learning based convolutional neural network model, TF-net, is proposed to achieve the efficient and accurate prediction of large-scale and short-term traffic flow. The key idea is to introduce the uncertainty features into the model without increasing the training cost to improve the prediction accuracy. Meanwhile, based on the idea of combining incremental learning with active learning, a certain percentage of typical samples in historical traffic flow data are sampled to fine-tune the prediction model, so as to further improve the prediction accuracy for special situations and ensure the real-time requirement. The experimental results show that the proposed traffic flow prediction model has better performance than the existing methods.


2020 ◽  
pp. 1-11
Author(s):  
Mingyu Tong ◽  
Huiming Duan ◽  
Xilin Luo

In view of the uncertainties in short-time traffic flows and the multimode correlation of traffic flow data, a grey prediction model for short-time traffic flows based on tensor decomposition is proposed. First, traffic flow data are expressed as tensors based on the multimode characteristics of traffic flow data, and the principle of the tensor decomposition algorithm is introduced. Second, the Verhulst model is a classic grey prediction model that can effectively predict saturated S-type data, but traffic flow data do not have saturated S-type data. Therefore, the tensor decomposition algorithm is applied to the Verhulst model, and then, the Verhulst model of the tensor decomposition algorithm is established. Finally, the new model is applied to short-term traffic flow prediction, and an instance analysis shows that the model can deeply excavate the multimode correlation of traffic flow data. At the same time, the effect of the new model is superior to five other grey prediction models. The predicted results can provide intelligent transportation system planning, control and optimization with reliable real-time dynamic information in a timely manner.


2013 ◽  
Vol 846-847 ◽  
pp. 1608-1611 ◽  
Author(s):  
Hui Jie Ding

As more and more cars are in service, the traffic jam becomes a serious problem in our society. At the same time, more and more sensors make the cars more and more intelligent, and this promotes the development of Internet of things. Real time monitoring the cars will produce massive sensing data, the Cloud computing gives us a good manner to solve this problem. In this paper, we propose a traffic flow data collection and traffic signal control system based on Internet of things and the Cloud computing. The proposed system contains two main parts, sensing data collection and traffic status control subsystem.


2018 ◽  
Vol 318 ◽  
pp. 297-305 ◽  
Author(s):  
Yan Tian ◽  
Kaili Zhang ◽  
Jianyuan Li ◽  
Xianxuan Lin ◽  
Bailin Yang

Author(s):  
Paulus Setiawan Suryadjaja ◽  
◽  
Maclaurin Hutagalung ◽  
Herman Yoseph Sutarto ◽  
◽  
...  

This Research presents a macroscopic model of traffic flow as the basis for making Intelligent Transportation System (ITS). The data used for modeling is The number of passing vehicles per three minutes. The traffic flow model created in The form of Fluid Flow Model (FFM). The parameters in The model are obtained by mixture Gaussian distribution approach. The distribution consists of two Gaussian distributions, each representing the mode of traffic flow. In The distribution, intermode shifting process is illustrated by the first-order Markov chain process. The parameters values are estimated using The Expectation-maximization (EM) algorithm. After The required parameter values are obtained, traffic flow is estimated using the Observation and transition-basedmost likely estimates Tracking Particle Filter (OTPF). To Examine the accuracy of the model has been made, the model estimation results are compared with the actual traffic flow data. Traffic flow data is collected on Monday 20 September 2017 at 06.00 to 10.00 on DipatiukurRoad, Bandung. The proposed model has accuracy with MAPE value below 10%, or falls into highly accurate categories


Sign in / Sign up

Export Citation Format

Share Document