scholarly journals Feasibility Study on Downhole Gas–Liquid Separator Design and Experiment Based on the Phase Isolation Method

2021 ◽  
Vol 11 (21) ◽  
pp. 10496
Author(s):  
Yuntong Yang ◽  
Zhaoyu Jiang ◽  
Lianfu Han ◽  
Wancun Liu ◽  
Xingbin Liu ◽  
...  

As oil exploitation enters its middle and late stages, formation pressure drops, and crude oil degases. In production profile logging, the presence of the gas phase will affect the initial oil–water two-phase flowmeter’s flow measurement results. In order to eliminate gas-phase interference and reduce measurement costs, we designed a downhole gas–liquid separator (DGLS) suitable for low flow, high water holdup, and high gas holdup. We based it on the phase isolation method. Using a combination of numerical simulation and fluid dynamic measurement experiments, we studied DGLS separation efficiency separately in the two cases of gas–water two-phase flow and oil–gas–water three-phase flow. Comparative analysis of the numerical simulation calculation and dynamic test results showed that: the VOF model constructed based on k−ε the equation is nearly identical to the dynamic test, and can be used to analyze DGLS separation efficiency; the numerical simulation results of the gas–water two-phase flow show that when the total flow rate is below 20 m3/d, the separation efficiency surpasses 90%. The oil–gas–water three-phase’s numerical simulation results show that the oil phase influences separation efficiency. When the total flow rate is 20 m3/d–50 m3/d and gas holdup is low, the DGLS’s separation efficiency can exceed 90%. Our experimental study on fluid dynamics measurement shows that the DGLS’s applicable range is when the gas mass is 0 m3/d~15 m3/d, and the water holdup range is 50%~100%. The research presented in this article can provide a theoretical basis for the development and design of DGLSs.

2016 ◽  
Vol 42 ◽  
pp. 1660171 ◽  
Author(s):  
YA-PING SHI ◽  
BIAO QU ◽  
SHAN HUANG ◽  
XIAO-DONG NIU

To investigate separation efficiency of a cyclone separator at different operating parameters, in this paper we use Fluent software to numerically study the three dimensional gas-solid two-phase flows in the cyclone separator. The present work mainly consists four parts. Firstly we investigates the accuracy of different turbulent models including the standard k-[Formula: see text] model, RNG k-[Formula: see text] model, Realizable k-[Formula: see text] model and Reynolds stress equation model (RSM), and finds that the RSM turbulence model gives a good comparison between the numerical results and the experimental results. Secondly, the gas phase flow rate, pressure, and turbulent distribution in the cyclone separator are explored numerically in detail with the RSM model. Thirdly, on the base of the gas flow results, gas-solid two phase flows in the cyclone separator are studied by coupling the random trajectory model in the Lagrangian coordinates so that the particle trajectories in separator are displayed. Finally, effects of particle size and velocity at the cyclone separator inlet on the separation efficiency are analyzed. Numerical results show that when the particle velocity is higher and particle size is larger at the inlet, the separation efficiency is better. However, when the particle velocity and size approach their threshold values, the separation efficiency will not change.


2007 ◽  
Author(s):  
Wenhong Liu ◽  
Liejin Guo ◽  
Ximin Zhang ◽  
Kai Lin ◽  
Long Yang ◽  
...  

2001 ◽  
Vol 123 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Jun Ishimoto ◽  
Mamoru Oike ◽  
Kenjiro Kamijo

The two-dimensional characteristics of the vapor-liquid two-phase flow of liquid helium in a pipe are numerically investigated to realize the further development and high performance of new cryogenic engineering applications. First, the governing equations of the two-phase flow of liquid helium based on the unsteady thermal nonequilibrium multi-fluid model are presented and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the two-phase flow of liquid helium is shown in detail, and it is also found that the phase transition of the normal fluid to the superfluid and the generation of superfluid counterflow against normal fluid flow are conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase. According to these theoretical results, the fundamental characteristics of the cryogenic two-phase flow are predicted. The numerical results obtained should contribute to the realization of advanced cryogenic industrial applications.


2012 ◽  
Vol 625 ◽  
pp. 117-120
Author(s):  
Hui Xu ◽  
Xiao Hong Chen

The liquid phase experiment is finished ,and the relation curve of input- pressure and input-flow、output-flow、distributary rate are worked out.We are bout to calculate the production capacity and define the best distribution rate of the operation parameters.At the same time , the solid-liquid phase separating experiment are made too and we conclude the relation curve of input-pressure and consistency 、separating efficiency .Comparing with the numerical simulation ,the result is reasonable.


Sign in / Sign up

Export Citation Format

Share Document