output flow
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 27)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Gustavo Koury Costa ◽  
Nariman Sepehri

Abstract Pump-controlled single-rod hydraulic actuators have long been the subject of intensive research towards building valve-less, more efficient systems. The main challenge is to deal with the uneven flows into and out of the differential cylinders. Over the past few years, several hydraulic circuits providing flow compensation have been proposed using hydrostatic pumps with identical input and output flows. However, one alternative solution would be to use a pump, whose input/output flow ratio matches the area ratio of the differential cylinder. Typical design and prototyping of the so-called asymmetrical pumps have been well reported previously. In this paper, we theoretically study the flow behaviour in a common design of asymmetrical axial-piston pumps and demonstrate some serious internal flow characteristics that can drastically limit the performance and range of operation of these pumps. Cavitation is the main problem to be addressed, and cannot be overlooked because of the very nature of the pump design.


Lubricants ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 121
Author(s):  
Vladimir Kodnyanko ◽  
Andrey Kurzakov ◽  
Olga Grigorieva ◽  
Maxim Brungardt ◽  
Svetlana Belyakova ◽  
...  

The design is considered and theoretical research of operability of the active radial gas-static bearing with restrictors of output flow rate in the form of mobile rings with an elastic supports and the dampers working by Helmholtz acoustic resonator principle is done. The mathematical model of the bearing dynamics and method of calculating its degree of stability are developed. The device is steady against vibrations; it has smaller power consumption compared to the known devices with input regulators, a zero and negative compliance of a gas-lubricated film.


Author(s):  
Hadi Norouzi ◽  
Mohammad Hosein Hasani ◽  
Jalal Bazargan ◽  
Seyed Mohammad Shoaei

Abstract To analyze the flow in a rockfill porous media using the Gradually Varied Flows theory (one-dimensional flow analysis) and solving the Parkin equation (two-dimensional flow analysis), calculation of the output flow depth as the downstream boundary condition is of great importance. In most previous studies, the output flow depth has been considered equal to the critical depth. In the rockfill porous media, unlike free surface channels, the fluid weight is exerted to the aggregates in addition to the flow, and therefore, the output flow depth from the rockfill is always greater than the critical depth (flow leaves the rockfill with a specific energy greater than the critical energy), and is expressed as a coefficient (Γ) of the critical depth. In the present study, using dimensional analysis and particle swarm optimization (PSO) algorithm and experimental data in different conditions (a total of 178 experimental data for rounded, crashed, Glass artificial materials with rhomboid structure, Glass artificial materials with cubic structure, sandy natural materials), an equation was presented to calculate the mentioned coefficient as a function of the physical characteristics of the rockfill porous media as well as the flow that can be used for all experimental conditions with high accuracy. If the output flow depth is considered to be equal to the critical depth, the mean relative error (MRE) in terms of using the experimental data of the mentioned materials separately and for the data of all the mentioned materials together was equal to 84.40, 83.81, 60.62, 67.68, 74.82 and 69.96%, respectively. In the case of using the proposed equation in the present study, the corresponding values of 5.49, 4.72, 6.24, 4.41, 6.42 and 8.99% were calculated, respectively.


Author(s):  
Hubert Delacroix ◽  
Frédéric Navacchia

Abstract The Eddy Current Flowmeter (ECFM) sensor plays an important part in the instrumentation of the future Sodium Fast Reactors (SFR), which will allows when located above the core to detect plugging (partial or total) of a sub assembly and when located on the primary pump to measure core pressure drop and core flowrate. This document describes the pre-design phase of a mock-up for ECFM tests and qualifications under sodium conditions for the detection of a partial or full plugging of a fuel sub-assembly. These tests will be the first of their kind, as the ECFM had never been qualified at nominal conditions of a reactor core outlet (sodium temperature, velocity and output flow).


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1506
Author(s):  
Yongchao Shan ◽  
Lixin Zhang ◽  
Xiao Ma ◽  
Xue Hu ◽  
Zhizheng Hu ◽  
...  

An appropriate pH value of liquid fertilizer can enable crops to better absorb nutrients from fertilizers. However, the mixed liquid fertilizer with high concentration of liquid fertilizer and irrigation water has a high pH value, which affects the absorption of nutrients by crops. Therefore, the precise regulation of liquid fertilizer pH value is an important link to realize the integration of water and fertilizer in modern agriculture. Due to pipeline transportation and diffusion of the regulating liquid and liquid fertilizer, the pH value control system has the characteristics of time-varying, non-linear and time-delayed models, and it is difficult for ordinary controllers to accurately control the pH value of liquid fertilizer. Therefore, modern agriculture urgently needs a controller that can adapt to non-linear and uncertain systems. According to the characteristics of the pH regulation process of liquid fertilizer, this study proposes and designs a modified fuzzy-PID-Smith predictive compensation algorithm, which adds the fuzzy-PID algorithm to the predictor of the conventional Smith algorithm to compensate for the error between the actual and theoretical models in order to reduce the decline of control quality caused by the model mismatch to the control system. To verify the practicability and robustness of the algorithm in practical applications, a liquid fertilizer pH value control system with STM32F103ZET6 as the control core was developed. The pH control system with fuzzy-PID and Smith algorithm as controller was used as the control group. The model was simulated and tested under two conditions of exact matching and imprecise matching, and performance tests were carried out under different output flow rates. The results showed that the maximum overshoot of the modified fuzzy-PID-Smith predictive compensation algorithm was significantly less than that of the other two algorithms at different output flow rates, with an average of 0.23%. The average steady-state time of adjusting the pH value of liquid fertilizer from 7.3 to 6.8 was 72 s, which was superior to the 145 s and 3.2% of fuzzy-PID and 130 s and 1.4% of the Smith controller.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1698
Author(s):  
Vladimir Kodnyanko ◽  
Stanislav Shatokhin ◽  
Andrey Kurzakov ◽  
Yuri Pikalov ◽  
Lilia Strok ◽  
...  

Due to their vanishingly low air friction, high wear resistance, and environmental friendliness, aerostatic bearings are used in machines, machine tools, and devices that require high accuracy of micro-movement and positioning. The characteristic disadvantages of aerostatic bearings are low load capacity, high compliance and an increased tendency for instability. In radial bearings, it is possible to use longitudinal microgrooves, which practically exclude circumferential air leakage, and contributes to a significant increase in load-bearing capacity. To reduce compliance to zero and negative values, inlet diaphragm and elastic airflow regulators are used. Active flow compensation is inextricably linked to the problem of ensuring the stability of bearings due to the presence of relatively large volumes of gas in the regulator, which have a destabilizing effect. This problem was solved by using an external combined throttling system. Bearings with input flow regulators have a number of disadvantages-they are very energy-intensive and have an insufficiently stable load capacity. A more promising way to reduce compliance is the use of displacement compensators for the movable element. Such bearings also allow for a decrease in compliance to zero and negative values, which makes it possible to use them not only as supports, but also as active deformation compensators of the technological system of machine tools in order to reduce the time and increase the accuracy of metalworking. The new idea of using active flow compensators is to regulate the flow rate not at the inlet, but at the outlet of the air flow. This design has the energy efficiency that is inherent to a conventional bearing, but the regulation of the lubricant output flow allows the compliance to be reduced to zero and negative values. This article discusses the results of a theoretical study of the static and dynamic characteristics of a two-row radial aerostatic bearing with longitudinal microgrooves and an output flow regulator. Mathematical modeling and theoretical study of stationary modes have been carried out. Formulas for determining static compliance and load capacity are obtained. Iterative finite-difference methods for determining the dynamic characteristics of a structure are proposed. The calculation of dynamic quality criteria was carried out on the basis of the method of rational interpolation of the bearing transfer function, as a system with distributed parameters, developed by the authors. It was found that the volumes of the microgrooves do not have a noticeable effect on the bearing dynamics. It is shown that, in this design, the external combined throttling system is an effective means of maintaining stability and high dynamic quality of the design operating in the modes of low, zero and negative compliance.


Machines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 128
Author(s):  
Chenchen Zhang ◽  
Jian Ruan ◽  
Tong Xing ◽  
Sheng Li ◽  
Bin Meng ◽  
...  

In order to improve the volumetric efficiency of the axial piston pump, this paper proposes a novel stacked roller 2D piston pump. It utilizes the alternate communication between the distribution cylinder and the oil intake and discharge ports of the housing to realize the flow distribution. While removing the independent flow distribution mechanism of the traditional piston pump, the leakage loss at the distribution friction pair can be reduced to improve the volumetric efficiency. Based on the flow distribution principle, an analytical model of the volumetric efficiency of the stacked roller 2D piston pump was established. Then, a co-simulation model of the whole pump was built using both the Simulink and AMESim software. The variation curve of output flow and leakage flow under different load pressures and rotational speeds was obtained, as well as the influence of backflow, axial leakage, and circumferential leakage on the volumetric efficiency. On this basis, a prototype of the stacked roller 2D pump was designed and manufactured in order to measure the output flow under different load pressures and rotational speeds, and a dedicated test bench was established. The experimental results are consistent with the simulation results; when the rotational speed is 6000 rpm and the load pressure is 5 MPa, the volumetric efficiency of the prototype pump can reach 98.6%. The research work validates that the novel stacked roller 2D piston pump has high volumetric efficiency.


Jurnal TAUJIH ◽  
2021 ◽  
Vol 14 (01) ◽  
pp. 34-58
Author(s):  
Mustafiyanti Mustafiyanti

Mustafiyanti, This type of research is descriptive qualitative, with the methodology of problem in the field in the analysis inductively deductively. Meanwhile, the relevance of Islamic education is closely related to social, economic, cultural and science and technology developments. With the development and progress of the times that are increasingly rapid, especially the technological era  Islamic education technology and information must produce pious and faithful graduates according to the needs of students in the sense that the Islamic education process can have an impac on fulfilling the needs  of students. Both the need for work, life in the community, and continuing to a higher level. Islamic education is expected to fill all the factors of production, hence the relevansi of higher education. The relevance of Islamic education can be seen by following the input-process-output flow. Input in a certain composition which is processed by a certain method will produce two kinds of reults, namely long-term results (outputs) and short-term results (outcomes).  Kata kunci : Islamic education, social development, social development, economy, culture, science and technology, pro and cons of educational efficiency


Author(s):  
D. A. Rodionov ◽  
S. I. Lazarev ◽  
D. N. Protasov ◽  
O. A. Abonosimov ◽  
K. K. Polyansky

For the qualitative application of ultrafiltration processes for the concentration and purification of food solutions, both experimental studies and a mathematical description of the processes of the membrane separation process of solutions from the standpoint of the development of computational mathematical models are required. In this work, by analytical solution of equations, that is, by the method of finite differences, mathematical equations are solved. To obtain the system, the flow continuity equations, convective diffusion equations, Navier-Stokes equations and flow equations with boundary conditions were solved in order to build a mathematical model of the process of ultrafiltration protein concentration in cheese whey in the production of rennet cheeses. As a result of the analytical solution of the equations, a system of mathematical equations was obtained that allows one to construct a profile of changes in the flow rates of the solution along the cross-section of the intermembrane channel and to determine the protein concentration in cheese whey along the length of the tubular ultrafiltration element BTU 05/2 of industrial type. The obtained mathematical model makes it possible to theoretically describe the process of ultrafiltration protein concentration in cheese whey along the entire length of the membrane channel of the tubular element under laminar and transient regimes of solution flow. The resulting system of mathematical equations makes it possible to find the numerical values of the mass flow rate of cheese whey, make it possible to calculate the specific output flow when the transmembrane pressure changes and to calculate the concentration of solutes in the secondary milk raw materials on the left and right ultrafiltration membrane of the intermembrane channel. The adequacy of the developed mathematical model was carried out by comparing the calculated and experimental data on the specific output flow when the transmembrane pressure in the intermembrane channel changes from 0.1 to 0.25 MPa with ultrafiltration concentration of cheese whey. The deviation of the calculated data found by the mathematical model from experimental studies obtained on a semi-industrial tubular ultrafiltration plant BTU 05/2 using semipermeable membranes, in which the active layer is made of fluoroplastic, hemisulphone and polyethersulfone, did not exceed 10%.


Sign in / Sign up

Export Citation Format

Share Document