scholarly journals Artifact Reduction in Compressed Sensing Averaging Techniques for High-Resolution Magnetic Resonance Images

2021 ◽  
Vol 11 (21) ◽  
pp. 9802
Author(s):  
Jeong-Min Shim ◽  
Young-Bo Kim ◽  
Chang-Ki Kang

This study aims to introduce a new compressed sensing averaging (CSA) technique for the reduction of blurring and/or ringing artifacts, depending on the k-space sampling ratio. A full k-space dataset and three randomly undersampled datasets were obtained for CSA images in a brain phantom and a healthy subject. An additional simulation was performed to assess the effect of the undersampling ratio on the images and the signal-to-noise ratios (SNRs). The image sharpness, spatial resolution, and contrast between tissues were analyzed and compared with other CSA techniques. Compared to CSA with multiple acquisition (CSAM) at 25%, 35%, and 45% undersampling, the reduction rates of the k-space lines of CSA with keyhole (CSAK) were 10%, 15%, and 22%, respectively, and the acquisition time was reduced by 16%, 23%, and 32%, respectively. In the simulation performed with a full sampling k-space dataset, the SNR decreased to 10.41, 9.80, and 8.86 in the white matter and 9.69, 9.35, and 8.46 in the gray matter, respectively. In addition, the ringing artifacts became substantially more predominant as the number of sampling lines decreased. The 50% modulation transfer functions were 0.38, 0.43, and 0.54 line pairs per millimeter for CSAM, CSAK with high-frequency sharing (CSAKS), and CSAK with high-frequency copying (CSAKC), respectively. In this study, we demonstrated that the smaller the sampling line, the more severe the ringing artifact, and that the CSAKC technique proposed to overcome the artifacts that occur when using CSA techniques did not generate artifacts, while it increased spatiotemporal resolution.

Author(s):  
Christoph H.-J. Endler ◽  
Anton Faron ◽  
Alexander Isaak ◽  
Christoph Katemann ◽  
Narine Mesropyan ◽  
...  

Purpose Compressed sensing (CS) is a method to accelerate MRI acquisition by acquiring less data through undersampling of k-space. In this prospective study we aimed to evaluate whether a three-dimensional (3D) isotropic proton density-weighted fat saturated sequence (PDwFS) with CS can replace conventional multidirectional two-dimensional (2D) sequences at 1.5 Tesla. Materials and Methods 20 patients (45.2 ± 20.2 years; 10 women) with suspected internal knee damage received a 3D PDwFS with CS acceleration factor 8 (acquisition time: 4:11 min) in addition to standard three-plane 2D PDwFS sequences (acquisition time: 4:05 min + 3:03 min + 4:46 min = 11:54 min) at 1.5 Tesla. Scores for homogeneity of fat saturation, image sharpness, and artifacts were rated by two board-certified radiologists on the basis of 5-point Likert scales. Based on these ratings, an overall image quality score was generated. Additionally, quantitative contrast ratios for the menisci (MEN), the anterior (ACL) and the posterior cruciate ligament (PCL) in comparison with the popliteus muscle were calculated. Results The overall image quality was rated superior in 3D PDwFS compared to 2D PDwFS sequences (14.45 ± 0.83 vs. 12.85 ± 0.99; p < 0.01), particularly due to fewer artifacts (4.65 ± 0.67 vs. 3.65 ± 0.49; p < 0.01) and a more homogeneous fat saturation (4.95 ± 0.22 vs. 4.55 ± 0.51; p < 0.01). Scores for image sharpness were comparable (4.80 ± 0.41 vs. 4.65 ± 0.49; p = 0.30). Quantitative contrast ratios for all measured structures were superior in 3D PDwFS (MEN: p < 0.05; ACL: p = 0.06; PCL: p = 0.33). In one case a meniscal tear was only diagnosed using multiplanar reformation of 3D PDwFS, but it would have been missed on standard multiplanar 2D sequences. Conclusion An isotropic fat-saturated 3D PD sequence with CS enables fast and high-quality 3D imaging of the knee joint at 1.5 T and may replace conventional multiplanar 2D sequences. Besides faster image acquisition, the 3D sequence provides advantages in small structure imaging by multiplanar reformation. Key Points:  Citation Format


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


Sign in / Sign up

Export Citation Format

Share Document