scholarly journals On the Water-Soluble Organic Matter in Inhalable Air Particles: Why Should Outdoor Experience Motivate Indoor Studies?

2021 ◽  
Vol 11 (21) ◽  
pp. 9917
Author(s):  
Regina M. B. O. Duarte ◽  
Armando C. Duarte

The current understanding of water-soluble organic aerosol (OA) composition, sources, transformations, and effects is still limited to outdoor scenarios. However, the OA is also an important component of particulate matter indoors, whose complexity impairs a full structural and molecular identification. The current limited knowledge on indoor OA, and particularly on its water-soluble organic matter (WSOM) fraction is the basis of this feature paper. Inspired by studies on outdoor OA, this paper discusses and prioritizes issues related to indoor water-soluble OA and their effects on human health, providing a basis for future research in the field. The following three main topics are addressed: (1) what is known about the origin, mass contribution, and health effects of WSOM in outdoor air particles; (2) the current state-of-the-art on the WSOM in indoor air particles, the main challenges and opportunities for its chemical characterization and cytotoxicity evaluation; and (3) why the aerosol WSOM should be considered in future indoor air quality studies. While challenging, studies on the WSOM fraction in air particles are highly necessary to fully understand its origin, fate, toxicity, and long-term risks indoors.

2020 ◽  
Vol 136 ◽  
pp. 105439 ◽  
Author(s):  
Qinya Fan ◽  
Jianxiong Sun ◽  
Guixiang Quan ◽  
Jinlong Yan ◽  
Jianhua Gao ◽  
...  

2021 ◽  
Vol 208 ◽  
pp. 111471 ◽  
Author(s):  
Inna V. Zamulina ◽  
Andrey V. Gorovtsov ◽  
Tatiana M. Minkina ◽  
Saglara S. Mandzhieva ◽  
Tatiana V. Bauer ◽  
...  

2012 ◽  
Vol 38 (1) ◽  
pp. 40-42 ◽  
Author(s):  
O. A. Gutorova ◽  
A. Kh. Sheudzhen ◽  
A. G. Ladatko

2016 ◽  
Author(s):  
Zhaolian Ye ◽  
Jiashu Liu ◽  
Aijun Gu ◽  
Feifei Feng ◽  
Yuhai Liu ◽  
...  

Abstract. Knowledge on aerosol chemistry in densely populated regions is critical for reduction of air pollution, while such studies haven't been conducted in Changzhou, an important manufacturing base and polluted city in the Yangtze River Delta (YRD), China. This work, for the first time, performed a thorough chemical characterization on the fine particular matter (PM2.5) samples, collected during July 2015 to April 2016 across four seasons in Changzhou city. A suite of analytical techniques were employed to characterize organic carbon / elemental carbon (OC / EC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSIIs), trace elements, and polycyclic aromatic hydrocarbons (PAHs) in PM2.5; in particular, an Aerodyne soot particle aerosol mass spectrometer (SP-AMS) was deployed to probe the chemical properties of water-soluble organic aerosols (WSOA). The average PM2.5 concentrations were found to be 108.3 μg m−3, and all identified species were able to reconstruct ~ 80 % of the PM2.5 mass. The WSIIs occupied about half of the PM2.5 mass (~ 52.1 %), with SO42−, NO3− and NH4+ as the major ions. On average, nitrate concentrations dominated over sulfate (mass ratio of 1.21), indicating influences from traffic emissions. OC and EC correlated well with each other and the highest OC / EC ratio (5.16) occurred in winter, suggesting complex OC sources likely including both secondarily formed and primarily emitted OA. Concentrations of eight trace elements (Mn, Zn, Al, B, Cr, Cu, Fe, Pb) can contribute up to 6.0 % of PM2.5 during winter. PAHs concentrations were also high in winter (140.25 ng m−3), which were predominated by median/high molecular weight PAHs with 5- and 6-rings. The organic matter including both water-soluble and water-insoluble species occupied ~ 20 % PM2.5 mass. SP-AMS determined that the WSOA had an average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), nitrogen-to-carbon (N / C) and organic matter-to-organic carbon (OM / OC) ratios of 0.36, 1.54, 0.11, and 1.74, respectively. Source apportionment of WSOA further identified two secondary OA (SOA) factors (a less oxidized and a more oxidized OA) and two primary OA (POA) factors (a nitrogen enriched hydrocarbon-like traffic OA and a cooking-related OA). On average, the POA contribution overweighed SOA (55 % vs. 45 %), indicating the important role of local anthropogenic emissions to the aerosol pollution in Changzhou. Our measurement also shows the abundance of organic nitrogen species in WSOA, and the source analyses suggest these species likely associated with traffic emissions, which warrants more investigations on PM samples from other locations.


Sign in / Sign up

Export Citation Format

Share Document