scholarly journals A Study on Interaction Prediction for Reducing Interaction Latency in Remote Mixed Reality Collaboration

2021 ◽  
Vol 11 (22) ◽  
pp. 10693
Author(s):  
Yujin Choi ◽  
Wookho Son ◽  
Yoon Sang Kim

Various studies on latency in remote mixed reality collaborations (remote MR collaboration) have been conducted, but studies related to interaction latency are scarce. Interaction latency in a remote MR collaboration occurs because action detection (such as contact or collision) between a human and a virtual object is required for finding the interaction performed. Therefore, in this paper, we propose a method based on interaction prediction to reduce the time for detecting the action between humans and virtual objects. The proposed method predicts an interaction based on consecutive joint angles. To examine the effectiveness of the proposed method, an experiment was conducted and the results were given. From the experimental results, it was confirmed that the proposed method could reduce the interaction latency compared to the one obtained by conventional methods.

2009 ◽  
Vol 8 (2) ◽  
pp. 1-6 ◽  
Author(s):  
Peng Song ◽  
Hang Yu ◽  
Stefan Winkler

Mixed reality applications can provide users with enhanced interaction experiences by integrating virtual and real world objects in a mixed environment. Through the mixed reality interface, a more realistic and immersive control style is achieved compared to the traditional keyboard and mouse input devices. The interface proposed in this paper consists of a stereo camera, which tracks the user's hands and fingers robustly and accurately in the 3D space. To enable a physically realistic experience in the interaction, a physics engine is adopted for the simulating the physics of virtual object manipulation. The objects can be picked up and tossed with physical characteristics, such as gravity and collisions which occur in the real world. Detection and interaction in our system is fully computer-vision based, without any markers or additional sensors. We demonstrate this gesture-based interface using two mixed reality game implementations: finger fishing, in which a player can simulate fishing for virtual objects with his/her fingers as in a real environment, and Jenga, which is a simulation of the well-known tower building game. A user study is conducted and reported to demonstrate the accuracy, effectiveness and comfort of using this interactive interface.


2021 ◽  
Vol 11 (2) ◽  
pp. 721
Author(s):  
Hyung Yong Kim ◽  
Ji Won Yoon ◽  
Sung Jun Cheon ◽  
Woo Hyun Kang ◽  
Nam Soo Kim

Recently, generative adversarial networks (GANs) have been successfully applied to speech enhancement. However, there still remain two issues that need to be addressed: (1) GAN-based training is typically unstable due to its non-convex property, and (2) most of the conventional methods do not fully take advantage of the speech characteristics, which could result in a sub-optimal solution. In order to deal with these problems, we propose a progressive generator that can handle the speech in a multi-resolution fashion. Additionally, we propose a multi-scale discriminator that discriminates the real and generated speech at various sampling rates to stabilize GAN training. The proposed structure was compared with the conventional GAN-based speech enhancement algorithms using the VoiceBank-DEMAND dataset. Experimental results showed that the proposed approach can make the training faster and more stable, which improves the performance on various metrics for speech enhancement.


1996 ◽  
Vol 324 ◽  
pp. 163-179 ◽  
Author(s):  
A. Levy ◽  
G. Ben-Dor ◽  
S. Sorek

The governing equations of the flow field which is obtained when a thermoelastic rigid porous medium is struck head-one by a shock wave are developed using the multiphase approach. The one-dimensional version of these equations is solved numerically using a TVD-based numerical code. The numerical predictions are compared to experimental results and good to excellent agreements are obtained for different porous materials and a wide range of initial conditions.


1948 ◽  
Vol 21 (4) ◽  
pp. 853-859
Author(s):  
R. F. A. Altman

Abstract As numerous investigators have shown, some of the nonrubber components of Hevea latex have a decided accelerating action on the process of vulcanization. A survey of the literature on this subject points to the validity of certain general facts. 1. Among the nonrubber components of latex which have been investigated, certain nitrogenous bases appear to be most important for accelerating the rate of vulcanization. 2. These nitrogen bases apparently occur partly naturally in fresh latex, and partly as the result of putrefaction, heating, and other decomposition processes. 3. The nitrogen bases naturally present in fresh latex at later stages have been identified by Altman to be trigonelline, stachhydrine, betonicine, choline, methylamine, trimethylamine, and ammonia. These bases are markedly active in vulcanization, as will be seen in the section on experimental results. 4. The nitrogenous substances formed by the decomposition processes have only partly been identified, on the one hand as tetra- and pentamethylene diamine and some amino acids, on the other hand as alkaloids, proline, diamino acids, etc. 5. It has been generally accepted that these nitrogenous substances are derived from the proteins of the latex. 6. Decomposition appears to be connected with the formation of a considerable amount of acids. 7. The production of volatile nitrogen bases as a rule accompanies the decomposition processes. These volatile products have not been identified. 8. The active nitrogen bases, either already formed or derived from complex nitrogenous substances, seem to be soluble in water but only slightly soluble in acetone.


2008 ◽  
Vol 02 (02) ◽  
pp. 207-233
Author(s):  
SATORU MEGA ◽  
YOUNES FADIL ◽  
ARATA HORIE ◽  
KUNIAKI UEHARA

Human-computer interaction systems have been developed in recent years. These systems use multimedia techniques to create Mixed-Reality environments where users can train themselves. Although most of these systems rely strongly on interactivity with the users, taking into account users' states, they still lack the possibility of considering users preferences when they help them. In this paper, we introduce an Action Support System for Interactive Self-Training (ASSIST) in cooking. ASSIST focuses on recognizing users' cooking actions as well as real objects related to these actions to be able to provide them with accurate and useful assistance. Before the recognition and instruction processes, it takes users' cooking preferences and suggests one or more recipes that are likely to satisfy their preferences by collaborative filtering. When the cooking process starts, ASSIST recognizes users' hands movement using a similarity measure algorithm called AMSS. When the recognized cooking action is correct, ASSIST instructs the user on the next cooking procedure through virtual objects. When a cooking action is incorrect, the cause of its failure is analyzed and ASSIST provides the user with support information according to the cause to improve the user's incorrect cooking action. Furthermore, we construct parallel transition models from cooking recipes for more flexible instructions. This enables users to perform necessary cooking actions in any order they want, allowing more flexible learning.


Author(s):  
Kevin Lesniak ◽  
Conrad S. Tucker

The method presented in this work reduces the frequency of virtual objects incorrectly occluding real-world objects in Augmented Reality (AR) applications. Current AR rendering methods cannot properly represent occlusion between real and virtual objects because the objects are not represented in a common coordinate system. These occlusion errors can lead users to have an incorrect perception of the environment around them when using an AR application, namely not knowing a real-world object is present due to a virtual object incorrectly occluding it and incorrect perception of depth or distance by the user due to incorrect occlusions. The authors of this paper present a method that brings both real-world and virtual objects into a common coordinate system so that distant virtual objects do not obscure nearby real-world objects in an AR application. This method captures and processes RGB-D data in real-time, allowing the method to be used in a variety of environments and scenarios. A case study shows the effectiveness and usability of the proposed method to correctly occlude real-world and virtual objects and provide a more realistic representation of the combined real and virtual environments in an AR application. The results of the case study show that the proposed method can detect at least 20 real-world objects with potential to be incorrectly occluded while processing and fixing occlusion errors at least 5 times per second.


2015 ◽  
Vol 1 (2) ◽  
pp. 306
Author(s):  
Hoger Mahmud Hussen

In this paper the outcome of a project is presented that aims to modify and improve one of the most widely used Augmented Reality tools. Augmented reality (AR), is a fast growing area of virtual reality research. Augmented Reality (AR) is a newly emerging technology by which user’s view of the real world is augmented with additional information from a computer model. ARToolKit is one of the most widely used toolkits for Augmented Reality applications. The toolkit tracks optical markers and overlays virtual objects on the markers. In the current version of the toolkit the overlaid object is stationary or loops regardless of the optical target position, this means that the overlaid object cannot be animated or changed based on the movement of the optical target. The aim is to improve the toolkit, therefore a design solution to modify it were designed and implement so that users can manipulate the position of the overlaid virtual object, through movements of the optical target. The design solution focuses on developing a mathematically based links between the position of the optical target and the overlaid virtual object. To test the solution test cases were developed and the results show that the design solution is effective and the principal idea can be used to develop many applications in different sectors such as education and health.


2011 ◽  
Vol 10 (3) ◽  
pp. 51-60
Author(s):  
Brahim Nini

This work deals with the virtual manipulation of a real object through its images. The results presented in this paper give a movie-based solution to the simulation process. We show how the simulation of infinite virtual views of a moving object can be reached using a finite number of object's taken images stored in an organized way. The basis of this solution is an analytical geometry-based method that links explicit applied user's actions, resulting in an object's views change, and images that match the best such views. This paper presents an overall solution for these three intertwined parts of the virtual manipulation that involves six degrees of freedom. Hence, a user is able to freely manipulate a virtual object in a scene in whatever manner s/he likes. In this case, the actions are transformed into rotations and/or translations which lead to some changes in object's appearance, both covered by two viewing features: zoom and/or rotations


2017 ◽  
Vol 53 (Supplement1) ◽  
pp. S176-S177
Author(s):  
Kohei WADA ◽  
Hidema SATO ◽  
Keisuke NAKAMURA ◽  
Hiroyuki MORIKAWA ◽  
Takashi KAWAI

2011 ◽  
Vol 189-193 ◽  
pp. 3191-3197
Author(s):  
Qiu Lian Dai ◽  
Can Bin Luo ◽  
Fang Yi You

In this paper, metal-bonded diamond wheels of different sized abrasive grain with different porosity were fabricated. Grinding experiments with these wheels on three kinds of materials were carried out under different grinding conditions. Experimental results revealed that wheel with high porosity (38%) had smaller grinding forces and specific energy than the one with a medium porosity (24%) on grinding G603. However, on grinding harder materials like Red granite or ceramics of Al2O3, the wheel with 38% porosity had bigger grinding forces and specific energy than the wheel with 24% porosity. Both wheels exhibited good self-sharpening capability during the grinding process of G603 and Red granite, but on grinding ceramics of Al2O3 the wheel with 38% porosity displayed in dull state during the grinding process . With the same porosity, the grinding forces of the wheel with a grain size of 230/270 US mesh were lower than the one with a grain size of W10 when grinding Red granite and ceramics of Al2O3. However revising results were obtained on grinding G603.


Sign in / Sign up

Export Citation Format

Share Document