scholarly journals Experimental Study on Out-of-Plane Seismic Performance of New Type Masonry System

2021 ◽  
Vol 11 (24) ◽  
pp. 11736
Author(s):  
Ho Choi ◽  
Kang-Seok Lee

The authors developed two types of block systems, consisting only of main and key blocks, without joint mortar, to improve the in- and out-of-plane seismic performances and enhance the workability. Two types of block systems have different key block shapes. One is the peanuts shape, and the other is the H shape. The proposed block systems have a half-height difference between the main and key blocks, to significantly improve seismic performance in in- and out-of-plane directions, compared to typical masonry wall with joint mortar. In this study, in order to evaluate the out-of-plane seismic performance of the proposed block systems, two types of block walls are experimentally investigated, including the typical block wall. Firstly, the shaking table tests are carried out to investigate the fundamental out-of-plane behaviors of three specimens. Next, four-point bending tests are planned to evaluate the out-of-plane seismic performance, since all specimens do not occur the out-of-plane collapse in the shaking table tests from the preliminary calculation. In this paper, the development of predominant period, profiles of acceleration and displacement, and maximum tensile strength of each specimen are discussed in detail. As a result, the maximum loads of the proposed block walls were about three to four times that of the typical block wall. This result means that the proposed block system has significantly improved seismic performance in the out-of-plane direction.

2020 ◽  
Vol 10 (24) ◽  
pp. 9102
Author(s):  
Ho Choi ◽  
Kang-Seok Lee

The authors developed two types of block systems consisting only of main block and key block without joint mortar to improve the seismic performances and to enhance the workability. Two types of block systems have different key block shapes: one is the peanut shape, and the other is the dumbbell shape. The proposed block systems have a half-height difference between the main block and the key block to significantly improve seismic performance compared to typical masonry walls with joint mortar. In this study, in order to evaluate the in-plane seismic performance of the proposed block systems, two types of block walls are experimentally investigated, including the typical block wall. In the tests, three full-scale, single-story specimens are tested under in-plane cyclic loading, and failure patterns and cracks are carefully observed. In this paper, the in-plane loading bearing capacity, energy dissipate capacity and reuse ratios of block walls are discussed in detail. As a result, the deformability, energy absorption capacity and reuse ratio of the proposed block systems were considerably higher than those of a typical block system.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jian Wu ◽  
Li-dan Zhang ◽  
Qing Yu ◽  
Bo Wang

Shale fired heat-insulation block, which is made of shale, fly ash, building rubbish, and waste paper, is a new type environment-friendly product. In order to study the mechanical properties of shale fired heat-insulation block walls, four full-scale walls were tested under El-Centro, Taft, and Ninghe earthquakes using shaking table equipment, in which the influence of the spacing of cast-in-place belt and the connection between the wall and the frame on the out-of-plane seismic performance of the wall was taken into account. The subject of this study is mainly about out-of-plane dynamic response of masonry walls in terms of frequency, displacement, and acceleration. It could be concluded that the cast-in-place belt and the rigid connection between wall and RC frame could effectively reduce the out-of-plane seismic response of the infill masonry wall. Finally, the recommendations for the use of this type of block in the structure are given.


2021 ◽  
Vol 1 (2) ◽  

The need to satisfy high seismic performance of structures and to comply with the latest worldwide policies of environmental sustainability is leading engineers and researchers to higher interest in timber buildings. A post-tensioned timber frame specimen was tested at the structural laboratory of the University of Basilicata in Italy, in three different configurations: i) without dissipation (post-tensioning only-F configuration); ii) with dissipative angles (DF- dissipative rocking configuration) and iii) with dissipative bracing systems (BF - braced frame configuration). The shaking table tests were performed considering a set of spectra-compatible seismic inputs at different seismic intensities. This paper describes the experimental estimation of energy dissipated by multistorey post-tensioned timber prototype frame with different anti-seismic hysteretic dissipative devices used in the DF and BF testing configurations. The main experimental seismic key parameters have also been investigated in all testing configurations.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Xiaoqing Ning ◽  
Junwu Dai ◽  
Wen Bai ◽  
Yongqiang Yang ◽  
Lulu Zhang

Cultural relics are precious properties of all humankind, the damage of which is nonresilient. In previous earthquakes, stored cultural relics have shown poor seismic performance, so effective seismic methods are urgently needed. However, due to various restrictions, traditional damping methods are not suitable for the cultural relics stored in the Palace Museum. An efficient damping method, composed of silicone damper and connecting elements, is proposed to protect these stored cultural relics. This novel damping device is very convenient to install and no change or move for the original structures is needed. It is suitable for various kinds of new and existing relic cabinets. In order to validate the effectiveness of this novel damping method, both numerical simulation and shaking table tests are carried out. Results show that this method can effectively enhance the seismic performance of relic cabinet itself and the internal cultural relics. Relic cabinets with damping devices deform significantly less than noncontrol cabinets while the inside relics also have less sliding or overturning. Overall, a damping method, designed for seismic protection of cabinet stored cultural relics, is proposed and its effectiveness has been successfully demonstrated.


2017 ◽  
Vol 15 (12) ◽  
pp. 5481-5510 ◽  
Author(s):  
Hongmei Gao ◽  
Ying Hu ◽  
Zhihua Wang ◽  
Chao Wang ◽  
Guoxing Chen

2019 ◽  
Vol 34 (0) ◽  
pp. 153-160
Author(s):  
Tsuyoshi NISHI ◽  
Mihiro TANI ◽  
Natsuki HAYASHI ◽  
Tatsuro KUBOTA ◽  
Hiroyuki KYOKAWA ◽  
...  

2014 ◽  
Vol 1065-1069 ◽  
pp. 1117-1120
Author(s):  
Chia Shang Chang Chien ◽  
Wei Yuan Wang ◽  
Ging Huei Huang ◽  
Yen Po Wang

This study proposes an innovative displacement-dependent metallic yielding damper for seismic protection of building structures. The damper is designed to deform inelastically under in-plane flexural bending and becomes energy-dissipative with an improved efficiency in terms of material utilization, as compared with those designed to bend in an out-of-plane manner. Both component test and seismic performance test of the proposed damper have been conducted in this study. Hysteresis of the component test indicates consistent and effective energy-dissipative characteristics of the damper. The contour of cracks on the surface of the damper after testing is well correlated with the stress distribution obtained from numerical analysis. Moreover, excellent seismic performance of the proposed in-plane arched damper has been demonstrated via a series of shaking table tests on a five-story model structure. Experimental results indicate that, with the dampers implemented, the acceleration responses in both peak and root-mean-squares of all floors are significantly reduced and more pronounced with the earthquake intensity increased. Effectiveness of the seismic damper is also revealed from the increase of the effective modal damping of all modes identified.


Sign in / Sign up

Export Citation Format

Share Document