scholarly journals A Universal Malicious Documents Static Detection Framework Based on Feature Generalization

2021 ◽  
Vol 11 (24) ◽  
pp. 12134
Author(s):  
Xiaofeng Lu ◽  
Fei Wang ◽  
Cheng Jiang ◽  
Pietro Lio

In this study, Portable Document Format (PDF), Word, Excel, Rich Test format (RTF) and image documents are taken as the research objects to study a static and fast method by which to detect malicious documents. Malicious PDF and Word document features are abstracted and extended, which can be used to detect other types of documents. A universal static detection framework for malicious documents based on feature generalization is then proposed. The generalized features include specification check errors, the structure path, code keywords, and the number of objects. The proposed method is verified on two datasets, and is compared with Kaspersky, NOD32, and McAfee antivirus software. The experimental results demonstrate that the proposed method achieves good performance in terms of the detection accuracy, runtime, and scalability. The average F1-score of all types of documents is found to be 0.99, and the average detection time of a document is 0.5926 s, which is at the same level as the compared antivirus software.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Zhang ◽  
Xiaolong Zheng ◽  
Zhanyong Tang ◽  
Tianzhang Xing ◽  
Xiaojiang Chen ◽  
...  

Mobile sensing has become a new style of applications and most of the smart devices are equipped with varieties of sensors or functionalities to enhance sensing capabilities. Current sensing systems concentrate on how to enhance sensing capabilities; however, the sensors or functionalities may lead to the leakage of users’ privacy. In this paper, we present WiPass, a way to leverage the wireless hotspot functionality on the smart devices to snoop the unlock passwords/patterns without the support of additional hardware. The attacker can “see” your unlock passwords/patterns even one meter away. WiPass leverages the impacts of finger motions on the wireless signals during the unlocking period to analyze the passwords/patterns. To practically implement WiPass, we are facing the difficult feature extraction and complex unlock passwords matching, making the analysis of the finger motions challenging. To conquer the challenges, we use DCASW to extract feature and hierarchical DTW to do unlock passwords matching. Besides, the combination of amplitude and phase information is used to accurately recognize the passwords/patterns. We implement a prototype of WiPass and evaluate its performance under various environments. The experimental results show that WiPass achieves the detection accuracy of 85.6% and 74.7% for passwords/patterns detection in LOS and in NLOS scenarios, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ming Xia ◽  
Peiliang Sun ◽  
Xiaoyan Wang ◽  
Yan Jin ◽  
Qingzhang Chen

Localization is a fundamental research issue in wireless sensor networks (WSNs). In most existing localization schemes, several beacons are used to determine the locations of sensor nodes. These localization mechanisms are frequently based on an assumption that the locations of beacons are known. Nevertheless, for many WSN systems deployed in unstable environments, beacons may be moved unexpectedly; that is, beacons are drifting, and their location information will no longer be reliable. As a result, the accuracy of localization will be greatly affected. In this paper, we propose a distributed beacon drifting detection algorithm to locate those accidentally moved beacons. In the proposed algorithm, we designed both beacon self-scoring and beacon-to-beacon negotiation mechanisms to improve detection accuracy while keeping the algorithm lightweight. Experimental results show that the algorithm achieves its designed goals.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Julia Caffrey-Hill ◽  
Nathan Clark ◽  
Brent Davis ◽  
William Helman

The Portable Document Format (PDF) is one of the most common document file types in academia, both in the library and the classroom. Unfortunately, PDF poses unique barriers to accessibility, particularly for the visually impaired. Ensuring that all people can read PDF content can be complex and expensive. There are alternative formats that can be made accessible with a lower level of effort, providing a better experience for both the end reader and the document author. This article serves as a call to arms for higher education to migrate away from PDF and to urge the tech community to develop new file formats that lend themselves to enhanced accessibility on a limited budget.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Longzhi Zhang ◽  
Dongmei Wu

Grasp detection based on convolutional neural network has gained some achievements. However, overfitting of multilayer convolutional neural network still exists and leads to poor detection precision. To acquire high detection accuracy, a single target grasp detection network that generalizes the fitting of angle and position, based on the convolution neural network, is put forward here. The proposed network regards the image as input and grasping parameters including angle and position as output, with the detection manner of end-to-end. Particularly, preprocessing dataset is to achieve the full coverage to input of model and transfer learning is to avoid overfitting of network. Importantly, a series of experimental results indicate that, for single object grasping, our network has good detection results and high accuracy, which proves that the proposed network has strong generalization in direction and category.


Sign in / Sign up

Export Citation Format

Share Document