scholarly journals Influence of the Origin of Polyamide 12 Powder on the Laser Sintering Process and Laser Sintered Parts

2017 ◽  
Vol 7 (5) ◽  
pp. 462 ◽  
Author(s):  
Manfred Schmid ◽  
Rob Kleijnen ◽  
Marc Vetterli ◽  
Konrad Wegener
2009 ◽  
Vol 15 (3) ◽  
pp. 192-203 ◽  
Author(s):  
Krassimir Dotchev ◽  
Wan Yusoff

2021 ◽  
Vol 234 ◽  
pp. 00006
Author(s):  
Hanane YAAGOUBI ◽  
Hamid ABOUCHADI ◽  
Mourad TAHA JANAN

One of the most promising additive manufacturing techniques is selective laser sintering (SLS) of thermoplastic materials. However, the materials successfully applicable to laser sintering (LS) are very limited today. In this study the exceptional position of polyamide 12 powders is underlined. Several numerical and experimental studies have been carried out to make comparisons between the use of powdered materials for polyamide 12 and other types of polymers during the SLS process. The complexity of this process and the interaction between the different phenomena involved has not been fully understood. In this work we highlight the different models of the selective laser sintering of polyamide 12 as well as their different results in order to better understand the functioning of this process.


2014 ◽  
Vol 548-549 ◽  
pp. 53-56
Author(s):  
Yusoff Way ◽  
Hadi Puwanto ◽  
M. Aichouni ◽  
Farizahani

In order to produce good functional Laser Sintering (LS) parts, it is important that the powder on the part bed surface receives a sufficient amount of power energy through the laser sintering process. The reason is that sufficient energy density is produced when the energy input increases and is applied to the part bed surface, which causes a higher temperature, and thus better melt flow. The objective of this research is to investigate the thermal properties of polymer materials used in Selective Laser Sintering (SLS) processes. In this experiment, there were five different thermoplastics powders known as polyamide 12 (PA2200), Glass Fill Polyamide (GF3200), Alumide, Duraflex and CastForm were tested using Differential Scanning Calorimetry (DSC). This outcome of this research would assist the SLS users to improve the sintering process and quality of the part surface finish.


2014 ◽  
Vol 1038 ◽  
pp. 75-81
Author(s):  
Bernd Niese ◽  
Philipp Amend ◽  
Uwe Urmoneit ◽  
Stephan Roth ◽  
Michael Schmidt

Embedding stereolithography (eSLA) is an additive, hybrid process, which provides a flexible production of 3D components and the ability to integrate electrical and optical conductive structures and functional components within parts. However, the embedding of conductive circuits in stereolithography (SLA) parts assumes usage of process technologies, which enables their direct integration of conductive circuits during the layer-wise building process. In this context, a promising method for in-situ generation of conductive circuits is dispensing of conductive adhesive on the current surface of the SLA part and its subsequent sintering. In this paper, the laser sintering (λ = 355 nm) of conductive adhesive mainly consisting of silver nanoparticles is investigated. The work intends to evaluate the curing behavior of the conductive adhesive, the beam-matter-interactions and the thermal damage of the SLA substrate. The investigations revealed a fast and flexible laser sintering process for the generation of conductive circuits with sufficient electrical conductivity and sufficient current capacity load. In this context, a characterization of the conductive structures is done by measuring their electrical resistance and their potential current capacity load.


2018 ◽  
Vol 24 (5) ◽  
pp. 813-820 ◽  
Author(s):  
Junjie Wu ◽  
Xiang Xu ◽  
Zhihao Zhao ◽  
Minjie Wang ◽  
Jie Zhang

Purpose The purpose of this paper is to investigate the effect of selective laser sintering (SLS) method on morphology and performance of polyamide 12. Design/methodology/approach Crystallization behavior is critical to the properties of semi-crystalline polymers. The crystallization condition of SLS process is much different from others. The morphology of polyamide 12 produced by SLS technology was investigated using scanning electron microscopy, polarized light microscopy, differential scanning calorimetry, X-ray diffraction and wide-angle X-ray diffraction. Findings Too low fill laser power brought about bad fusion of powders, while too high energy input resulted in bad performance due to chain scission of macromolecules. There were three types of crystal in the raw powder material, denoted as overgrowth crystal, ring-banded spherulite and normal spherulite. Originality/value In this work, SLS samples with different sintering parameters, as well as compression molding sample for the purpose of comparison, were made to study the morphology and crystal structure of sintered PA12 in detail.


Sign in / Sign up

Export Citation Format

Share Document