scholarly journals III-Nitride Short Period Superlattices for Deep UV Light Emitters

2018 ◽  
Vol 8 (12) ◽  
pp. 2362 ◽  
Author(s):  
Sergey Nikishin

III-Nitride short period superlattices (SPSLs), whose period does not exceed ~2 nm (~8 monolayers), have a few unique properties allowing engineering of light-emitting devices emitting in deep UV range of wavelengths with significant reduction of dislocation density in the active layer. Such SPSLs can be grown using both molecular beam epitaxy and metal organic chemical vapor deposition approaches. Of the two growth methods, the former is discussed in more detail in this review. The electrical and optical properties of such SPSLs, as well as the design and fabrication of deep UV light-emitting devices based on these materials, are described and discussed.

2008 ◽  
Vol 590 ◽  
pp. 141-174 ◽  
Author(s):  
Asif Khan ◽  
Krishnan Balakrishnan

Ultraviolet light emitting diodes with emission wavelengths less than 400 nm have been developed using the AlInGaN material system. Rapid progress in material growth, device fabrication and packaging enabled demonstration of deep-UV light-emitting devices with emission from 400 to 210 nm with varying efficiencies. For high aluminum alloy compositions needed for the shorter wavelength devices, these materials border between having material properties like conventional semiconductors and insulators, adding a degree of complexity to developing efficient light emitting devices. This chapter provides a review of III-nitride based UV light emitting devices including technical developments that allow for emission in the ultraviolet spectrum, and an overview of their applications in optoelectronic systems.


2009 ◽  
Vol 1202 ◽  
Author(s):  
Sergey A. Nikishin ◽  
Boris Borisov ◽  
Vladimir Mansurov ◽  
Mahesh Pandikunta ◽  
Indra Chary ◽  
...  

AbstractThe Mg doped AlN/AlxGa1-xN (0.03 ≤ x ≤ 0.05) short period superlattices (SPSLs) were grown by gas source molecular beam epitaxy on (0001) sapphire substrates. The average AlN mole fraction is ∼ 0.7 and the hole concentration is ∼ 7×1017 cm-3. Contacts formed to the SPSLs using Ni/Au bilayer are found to have specific contact resistance ∼ 5×10-5 Ωcm2 near room temperature and to show weak temperature dependence attributed to activation of Mg acceptors in the AlN barriers of SPSLs. These p-SPSLs are attractive for fabrication of transparent low resistive ohmic contacts for deep UV LEDs.


2003 ◽  
Vol 798 ◽  
Author(s):  
M. Holtz ◽  
I. Ahmad ◽  
V. V. Kuryatkov ◽  
B. A. Borisov ◽  
G. D. Kipshidze ◽  
...  

ABSTRACTWe report optical properties of deep UV light emitting diodes (LEDs). Devices are based on short period superlattices of AlN/AlxGa1-x(In)N (x ∼ 0.08) grown by gas source molecular beam epitaxy with ammonia. Structures consist of a 50-nm thick AlN nucleation/buffer layer deposited on sapphire. This is followed by a 1-micron thick Si-doped buffer layer of AlGaN or AlN/AlGa(In)N designed to be transparent for wavelengths longer than 240 nm. The design thickness of the superlattice well layers is systematically varied from 0.50 nm to 1.25 nm and the thickness of the barrier is varied from 0.75 nm to 2.00 nm. The n- and p-type SPSLs were doped with Si derived from silane and Mg evaporated from an effusion cell, respectively. We investigate device structures as well as superlattices which are nominally undoped, p-type, and n-type. Optical properties are investigated using reflectance, cathodoluminescence, and, in the case of LEDs, using electroluminescence. By controlling the properties of the superlattice, we obtain optical gaps ranging from 4.5 eV (276 nm) and 5.3 eV (234 nm). A systematic shift between the optical gap and the CL peak emission energy is discussed. Electrical properties are studied using I-V, C-V, and Hall effect. LEDs based on these superlattices and operating in the range of 260 to 280 nm exhibit turn-on voltages in the range of 4 to 6 V and support dc current densities in excess of 500 A/cm2 at room temperature. We present results on the electrical and optical properties of our LEDs designed using these studies.


2011 ◽  
Vol 415-417 ◽  
pp. 656-659
Author(s):  
Jing Zhang ◽  
Shiro Sakai

We have successfully fabricated light emitting diodes (LEDs) based on patterned sapphire substrates (PSSs) fabricated by employing nanoimprint lithography (NIL) technique. The nano-patterns were designed as regular triangles consisting of columns, whose diameters and pitches were 100, 150, 200, 250 nm and 200, 300, 400, 500 nm, respectively. 412 nm wavelength LEDs grown by metal organic chemical vapor deposition (MOCVD) method were also demonstrated. The NIL technique and nano-etching by employing RIE were demonstrated in details. The qualities of all LEDs based on PSSs are superior compared with that non-patterned sapphire substrate LED. The experimental results showed that the light output power was increased by using the PSS structure. At a driving current of 20 mA, the light output powers of LEDs based on PSSs with 200, 300, 400 and 500 nm pitches are enhanced by 59%, 79%, 42% and 48%, compared with the conventional LEDs. These results provide promising potential to increase output powers of commercial light-emitting devices.


2007 ◽  
Vol 46 (No. 23) ◽  
pp. L537-L539 ◽  
Author(s):  
Vinod Adivarahan ◽  
Qhalid Fareed ◽  
Surendra Srivastava ◽  
Thomas Katona ◽  
Mikhail Gaevski ◽  
...  

2012 ◽  
Vol 1439 ◽  
pp. 109-114
Author(s):  
XinYi Chen ◽  
Alan M. C. Ng ◽  
Aleksandra B. Djurišić ◽  
Chi Chung Ling ◽  
Wai-Kin Chan ◽  
...  

ABSTRACTLight-emitting diodes (LEDs) based on p-GaN/ZnO heterojunction were fabricated. GaN was deposited on sapphire using metal-organic chemical vapor deposition (MOCVD), and two kinds of ZnO i.e. ZnO thin film deposited by sputtering and ZnO nanorods (NRs) grown by hydrothermal method were used as n-type layer respectively. MgO film with the thickness around 10 nm was deposited by electron-beam deposition to act as an interlayer between GaN and ZnO. Photoluminescence, electroluminescence and I-V curves were measured to compare the properties of GaN based heterojunction LEDs with different architectures. The existence of MgO interlayer as well as the morphology of ZnO obviously influenced the electrical and optical properties of GaN based LEDs. The effect of MgO interlayer on ZnO growth, properties and I-V curves and emission spectra of LEDs is discussed in detail.


2009 ◽  
Vol 94 (22) ◽  
pp. 222105 ◽  
Author(s):  
William E. Fenwick ◽  
Andrew Melton ◽  
Tianming Xu ◽  
Nola Li ◽  
Christopher Summers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document