deep uv
Recently Published Documents


TOTAL DOCUMENTS

1583
(FIVE YEARS 284)

H-INDEX

55
(FIVE YEARS 10)

2022 ◽  
Vol 128 (2) ◽  
Author(s):  
Lijuan Liu ◽  
Lin Zhao ◽  
Xingjiang Zhou ◽  
Xiaoyang Wang

2021 ◽  
Author(s):  
Tong Mei ◽  
Shan Li ◽  
Shao-Hui Zhang ◽  
Yuanyuan Liu ◽  
Peigang Li

Abstract In this paper, a ε-Ga2O3 film/ZnO nanoparticle hybrid heterojunction deep ultraviolet (UV) photodetector is described for 254 nm wavelength sensing application. The constructed ε-Ga2O3/ZnO heterojunction photodetector can operate in dual modes which are power supply mode and self-powered mode. Under reverse 5 V bias with 254 nm light intensity of 500 μW/cm2, the photoresponsivity, specific detectivity and external quantum efficiency are 59.7 mA/W, 7.83×1012 Jones and 29.2%. At zero bias, the advanced ε-Ga2O3/ZnO photodetector performs decent self-powered photoelectrical properties with photo-to-dark current ratio of 1.28×105, on/off switching ratio of 3.22×104, rise/decay times of 523.1/31.7 ms, responsivity of 4.12 mA/W and detectivity of 2.24×1012 Jones. The prominent photodetection performance lays a solid foundation for ε-Ga2O3/ZnO heterojunction in deep UV sensor application.


2021 ◽  
pp. 2102329
Author(s):  
Titao Li ◽  
Siqi Zhu ◽  
Lemin Jia ◽  
Richeng Lin ◽  
Wei Zheng ◽  
...  

2021 ◽  
Author(s):  
Chao Wu ◽  
Xingxing Jiang ◽  
Yilei Hu ◽  
Chunbo Jiang ◽  
Tianhui Wu ◽  
...  
Keyword(s):  

Author(s):  
Chao Wu ◽  
Xingxing Jiang ◽  
Yilei Hu ◽  
Chunbo Jiang ◽  
Tianhui Wu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 29 (26) ◽  
pp. 42485
Author(s):  
Qiang Fu ◽  
Niall Hanrahan ◽  
Lin Xu ◽  
Simon Lane ◽  
Di Lin ◽  
...  
Keyword(s):  
Uv Laser ◽  

2021 ◽  
Vol 923 (2) ◽  
pp. L28
Author(s):  
Fang-Ting Yuan ◽  
Zhen-Ya Zheng ◽  
Ruqiu Lin ◽  
Shuairu Zhu ◽  
P. T. Rahna

Abstract We report the detection of Lyman continuum (LyC) emission from the galaxy, CDFS-6664, at z = 3.797 in a sample of Lyman break galaxies with detected [O iii] emission lines. The LyC emission is detected with a significance ∼5σ in the F336W band of the Hubble Deep UV Legacy Survey, corresponding to the 650–770 Å rest frame. The light centroid of the LyC emission is offset from the galaxy center by about 0.″2 (1.4 pkpc). The Hubble deep images at longer wavelengths show that the emission is unlikely provided by low-redshift interlopers. The photometric and spectroscopic data show that the possible contribution of an active galactic nucleus is quite low. Fitting the spectral energy distribution of this source to stellar population synthesis models, we find that the galaxy is young (∼50 Myr) and actively forming stars with a rate of 52.1 ± 4.9 M ⊙ yr−1. The significant star formation and the spatially offset LyC emission support a scenario where the ionizing photons escape from the low-density cavities in the ISM excavated by massive young stars. From the nebular model, we estimate the escape fraction of LyC photons to be 38% ± 7% and the corresponding intergalactic medium (IGM) transmission to be 60%, which deviates more than 3σ from the average transmission. The unusually high IGM transmission of LyC photons in CDFS-6664 may be related to a foreground type-2 quasar, CDF-202, at z = 3.7, with a projected separation of 1.′2 only. The quasar may have photoevaporated optically thick absorbers and enhance the transmission on the sightline of CDFS-6664.


Author(s):  
Özüm Emre Aşırım

AbstractSupercontinuum generating sources, which incorporate a non-linear medium that can generate a wideband intensity spectrum under high-power excitation, are ideal for many applications of photonics such as spectroscopy and imaging. Supercontinuum generation using ultra-miniaturized devices is of great interest for on-chip imaging, on-chip measurement, and for future integrated photonic devices. In this study, semiconductor nano-antennas are proposed for ultra-broadband supercontinuum generation via analytical and numerical investigation of the electric field wave equation and the Lorentz dispersion model, incorporating semiconductor electron dynamics under optical excitation. It is shown that by a rapid modulation of the carrier injection rate for a semiconductor nano-antenna, one can generate an ultra-wideband supercontinuum that extends from the far-infrared (Far-IR) range to the deep-ultraviolet (Deep-UV) range for an infrared excitation of arbitrary intensity level. The modulation of the injection rate is achieved by high-intensity pulsed-pump irradiation of the nano-antenna, which has a fast nonradiative electron recombination mechanism that is on the order of sub-picoseconds. It is shown that when the pulse period of the pump irradiation is of the same order with the electron recombination time, rapid modulation of the free electron density occurs and electric energy accumulates in the nano-antenna, allowing for the generation of a broad supercontinuum. The numerical results are compared with the semiempirical second harmonic generation efficiency results for validation and a mean accuracy of 99.7% is observed. The aim of the study is to demonstrate that semiconductor nano-antennas can be employed to achieve superior supercontinuum generation performance at the nanoscale and the process can be programmed in an adaptive manner for continuous spectral shaping via tuning the pulse period of the pump irradiation.


Author(s):  
Sadat Hasan ◽  
Maximilian E. Blaha ◽  
Sebastian K. Piendl ◽  
Anish Das ◽  
David Geissler ◽  
...  

AbstractMicrofluidic droplet sorting systems facilitate automated selective micromanipulation of compartmentalized micro- and nano-entities in a fluidic stream. Current state-of-the-art droplet sorting systems mainly rely on fluorescence detection in the visible range with the drawback that pre-labeling steps are required. This limits the application range significantly, and there is a high demand for alternative, label-free methods. Therefore, we introduce time-resolved two-photon excitation (TPE) fluorescence detection with excitation at 532 nm as a detection technique in droplet microfluidics. This enables label-free in-droplet detection of small aromatic compounds that only absorb in a deep-UV spectral region. Applying time-correlated single-photon counting, compounds with similar emission spectra can be distinguished due to their fluorescence lifetimes. This information is then used to trigger downstream dielectrophoretic droplet sorting. In this proof-of-concept study, we developed a polydimethylsiloxane-fused silica (FS) hybrid chip that simultaneously provides a very high optical transparency in the deep-UV range and suitable surface properties for droplet microfluidics. The herein developed system incorporating a 532-nm picosecond laser, time-correlated single-photon counting (TCSPC), and a chip-integrated dielectrophoretic pulsed actuator was exemplarily applied to sort droplets containing serotonin or propranolol. Furthermore, yeast cells were screened using the presented platform to show its applicability to study cells based on their protein autofluorescence via TPE fluorescence lifetime at 532 nm. Graphical abstract


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7000
Author(s):  
Iftikhar Ahmed Channa ◽  
Aqeel Ahmed Shah ◽  
Muhammad Rizwan ◽  
Muhammad Atif Makhdoom ◽  
Ali Dad Chandio ◽  
...  

Silica is one of the most efficient gas barrier materials, and hence is widely used as an encapsulating material for electronic devices. In general, the processing of silica is carried out at high temperatures, i.e., around 1000 °C. Recently, processing of silica has been carried out from a polymer called Perhydropolysilazane (PHPS). The PHPS reacts with environmental moisture or oxygen and yields pure silica. This material has attracted many researchers and has been widely used in many applications such as encapsulation of organic light-emitting diodes (OLED) displays, semiconductor industries, and organic solar cells. In this paper, we have demonstrated the process optimization of the conversion of the PHPS into silica in terms of curing methods as well as curing the environment. Various curing methods including exposure to dry heat, damp heat, deep UV, and their combination under different environments were used to cure PHPS. FTIR analysis suggested that the quickest conversion method is the irradiation of PHPS with deep UV and simultaneous heating at 100 °C. Curing with this method yields a water permeation rate of 10−3 g/(m2⋅day) and oxygen permeation rate of less than 10−1 cm3/(m2·day·bar). Rapid curing at low-temperature processing along with barrier properties makes PHPS an ideal encapsulating material for organic solar cell devices and a variety of similar applications.


Sign in / Sign up

Export Citation Format

Share Document