Present Status of Deep UV Nitride Light Emitters

2008 ◽  
Vol 590 ◽  
pp. 141-174 ◽  
Author(s):  
Asif Khan ◽  
Krishnan Balakrishnan

Ultraviolet light emitting diodes with emission wavelengths less than 400 nm have been developed using the AlInGaN material system. Rapid progress in material growth, device fabrication and packaging enabled demonstration of deep-UV light-emitting devices with emission from 400 to 210 nm with varying efficiencies. For high aluminum alloy compositions needed for the shorter wavelength devices, these materials border between having material properties like conventional semiconductors and insulators, adding a degree of complexity to developing efficient light emitting devices. This chapter provides a review of III-nitride based UV light emitting devices including technical developments that allow for emission in the ultraviolet spectrum, and an overview of their applications in optoelectronic systems.

2018 ◽  
Vol 8 (12) ◽  
pp. 2362 ◽  
Author(s):  
Sergey Nikishin

III-Nitride short period superlattices (SPSLs), whose period does not exceed ~2 nm (~8 monolayers), have a few unique properties allowing engineering of light-emitting devices emitting in deep UV range of wavelengths with significant reduction of dislocation density in the active layer. Such SPSLs can be grown using both molecular beam epitaxy and metal organic chemical vapor deposition approaches. Of the two growth methods, the former is discussed in more detail in this review. The electrical and optical properties of such SPSLs, as well as the design and fabrication of deep UV light-emitting devices based on these materials, are described and discussed.


2021 ◽  
Vol 118 (23) ◽  
pp. 231102
Author(s):  
Youn Joon Sung ◽  
Dong-Woo Kim ◽  
Geun Young Yeom ◽  
Kyu Sang Kim

2007 ◽  
Vol 46 (No. 23) ◽  
pp. L537-L539 ◽  
Author(s):  
Vinod Adivarahan ◽  
Qhalid Fareed ◽  
Surendra Srivastava ◽  
Thomas Katona ◽  
Mikhail Gaevski ◽  
...  

2019 ◽  
Vol 13 ◽  
pp. 102285 ◽  
Author(s):  
Chia-Yen Huang ◽  
Tsung-Yen Liu ◽  
Shih-Ming Huang ◽  
Kai-Hsiang Chang ◽  
Tsu-Ying Tai ◽  
...  

2006 ◽  
Vol 45 (No. 12) ◽  
pp. L352-L354 ◽  
Author(s):  
Shuai Wu ◽  
Sameer Chhajed ◽  
Li Yan ◽  
Wenhong Sun ◽  
Maxim Shatalov ◽  
...  

2020 ◽  
Vol 109 ◽  
pp. 110352 ◽  
Author(s):  
Pradip Dalapati ◽  
Kosuke Yamamoto ◽  
Takashi Egawa ◽  
Makoto Miyoshi

2004 ◽  
Vol 19 (7) ◽  
pp. 1917-1923 ◽  
Author(s):  
W.R. Salaneck ◽  
M. Fahlman

The control of hybrid interfaces in polymer-based electronic devices may be enabling in many applications. The engineering of hybrid interface involves (requires) an understanding of the electronic structure of materials—one organic and one inorganic—that form the two halves of hybrid interfaces, as well as the electronic and chemical consequences of the coupling of the two. Although much literature exists describing the interfaces between vapor-deposited organic molecules and model molecules for polymers on the surfaces of clean metals in ultrahigh vacuum, few studies have been reported on spin-coated, semiconducting polymer films on realistic substrates. Spin coating in an inert atmosphere (or even air) is a central part of the process of the fabrication of polymer-based light-emitting devices and other modern polymer-based electronic components. Here, work on the electronic structure of semiconducting (conjugated) polymer films spin-coated onto selected inorganic substrates, carried out using ultraviolet photoelectron spectroscopy, is reviewed and summarized to generate a generalized picture of the hybrid interfaces formed under realistic device fabrication conditions.


Sign in / Sign up

Export Citation Format

Share Document