scholarly journals Fatigue of Friction Stir Welded Aluminum Alloy Joints: A Review

2018 ◽  
Vol 8 (12) ◽  
pp. 2626 ◽  
Author(s):  
Hongjun Li ◽  
Jian Gao ◽  
Qinchuan Li

The application fields of friction stir welding technology, such as aerospace and transportation, has high safety requirements and fatigue is the dominant failure mode for weldments. It is of great significance to understand the fatigue properties of friction stir welded joints. This paper provides an overview of the fatigue mechanism, influencing factors, crack growth rate, and fatigue life assessment. It is found that the fatigue performance of friction stir welded joints can be affected by welding process parameters, test environment, stress ratio, residual stress, and weld defect. The optimized process parameters can produce high quality weld and increase the weld fatigue life. Laser peening is an effective post weld treatment to decrease fatigue crack growth rate and improve material fatigue life.

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6186
Author(s):  
Kuan Zhao ◽  
Shuai Wang ◽  
He Xue ◽  
Zheng Wang

Environmentally assisted cracking (EAC) is essential in predicting light water reactors’ structural integrity and service life. Alloy 600 (equivalent to Inconel 600) has excellent corrosion resistance and is often used as a welding material in welded joints, but material properties of the alloy are heterogeneous in the welded zone due to the complex welding process. To investigate the EAC crack growth behavior of Alloy 600 for safe-end welded joints, the method taken in this paper concerns the probability prediction of the EAC crack growth rate. It considers the material heterogeneity, combining the film slip-dissolution/oxidation model, and the elastic-plastic finite element method. The strain rate at the crack tip is a unique factor to describe the mechanical state. Still, it is challenging to accurately predict it because of the complicated and heterogeneous material microstructure. In this study, the effects of material heterogeneity on the EAC crack growth behavior are statistically analyzed. The results show that the material heterogeneity of Alloy 600 can not be ignored because it affects the prediction accuracy of the crack growth rate. The randomness of yield strength has the most influence on the EAC growth rate, while Poisson’s ratio has the smallest.


2012 ◽  
Vol 498 ◽  
pp. 126-138 ◽  
Author(s):  
Pedro Miguel Guimarães Pires Moreira ◽  
Paulo Manuel Salgado Tavares de Castro

Friction stir welding (FSW) is a solid-state joining process which emerged as an alternative technology to join high strength alloys that were difficult to weld with conventional techniques, [1]. Developments of this technique are being driven by aeronautic, aerospace and railway industries. An advantage of this joining technique is its low heat input when compared with arc welding processes. This feature allows the achievement of high mechanical properties, low distortion and low residual stresses, [2]. Also, since it is a solid-state welding process, hydrogen cracking or heat affected zone (HAZ) softening phenomena are limited. This paper presents a study of fatigue crack growth behaviour of friction stir welded butt joints of AA2024-T3, aluminium commonly used in riveted aeronautic fuselage structures. Crack growth studies are often carried out using uniform thickness joints, ASTM E647 [3]. Nevertheless, for some applications there is a need to join components with different thicknesses, which, under certain limits, can be welded using FSW. Crack growth tests on these joints are not standard. The present study concerns butt joints made using two plates with different thicknesses, 3.8mm and 4.0mm. The joints’ mechanical behaviour was studied performing static (tensile) and fatigue tests. The fatigue crack growth rate of cracks growing in different zones of the welded joint (nugget, heat affected zone - HAZ) and in base material was analysed. The microhardness profile was assessed in order to analyse the influence of the welding process in each weld zone. Further to higher static properties, welded joints present lower crack growth rate when compared with its base material.


2014 ◽  
Vol 891-892 ◽  
pp. 948-954 ◽  
Author(s):  
Madeleine Burchill ◽  
Simon A. Barter ◽  
Michael Jones

It has often been observed that the growth of short fatigue cracks under variable amplitude (VA) cyclic loading is not well predicted when utilising standard constant amplitude (CA) crack growth rate/stress intensity data (da/dN v DK). This paper outlines a coupon fatigue test program and analyses, investigating a possible cause of crack growth retardation from CA-only testing. Various test loading spectra were developed with sub-blocks of VA and CA cycles, then using quantitative fractography (QF) the sub-block crack growth increments were measured. Comparison of these results found that, after establishing a consistent uniform crack front using a VA load sequence, the average crack growth rate then progressively slowed down with the number of subsequent CA load cycles applied. Further fractographic investigation of the fracture surface at the end of each CA and VA sub-block crack growth, identified significant crack front morphology differences. Thus it is postulated that a variation or deviation from an efficient crack path is a driver of local retardation in short crack growth during CA loading. This may be a source of error in analytical predictions of crack growth under VA spectra loading that may need to be considered in addition to other potential effects such asless closure whilst cracks are small. For aircraft designers, using solely CA data for fatigue life predictions this may result in non-conservative estimates of total crack fatigue life, producing unexpected failures or an increased maintenance burden.


Author(s):  
Daisuke Kobayashi ◽  
Masamichi Miyabe ◽  
Masahiro Achiwa

In the case of failure incidents involving important components, it is necessary to clarify the fracture mechanism by failure analysis. In the case of conventional steel materials, according to the individual fracture mode the fracture surfaces have unique fracture morphology corresponding to tensile, impact, creep and fatigue conditions. We can identify the mechanism of a fracture by observing its fracture surface, and this is known as the fractography. However regarding nickel-base superalloys, any differences in fracture morphology are unfortunately barely distinguishable, which makes it difficult to conduct fractography. In this paper, in order to characterize the damage behavior of IN738LC, the misorientation analysis within grains by using the electron backscattered diffraction (EBSD) method across almost all the whole range of specimens has been carried out. As a result, it was found that the cross section of fracture samples have unique distinguishable morphology corresponding to the individual fracture mode. Furthermore, the striations corresponding to the fatigue crack growth rate was found in the crack cross-sectional sample. It was considered that the EBSD striation observed on the cross section reveals the fatigue crack growth rate, as with striations found in the fatigue fracture surface such as conventional steel materials. On the case study of the actual (service and damaged) gas turbine blade, the EBSD analysis as the fractography revealed the mechanism of cracking and the fatigue crack growth rate. Thus, it is concluded that the misorientation analysis of damage materials allows the qualitative estimation of the fracture mode and the quantitative life assessment of the fatigue crack growth.


Author(s):  
Koji Miyoshi ◽  
Masayuki Kamaya

Abstract Mixing flow causes fluid temperature fluctuations near the pipe walls and may result in fatigue crack initiation. The authors have previously reported the loading sequence effect on thermal fatigue in a mixing tee. The fatigue damage around the hot spot, which was heated by the hot jet flow from the branch pipe, obtained by Miner’s rule was less than 1.0. Since the strain around the hot spot had waveforms with periodic overload, the loading sequence with periodic overload caused reduction of the fatigue life around the hot spot. In this study, the effect of a single overload on the fatigue crack growth rate was investigated in order to clarify the reduction of the fatigue life at the mixing tee due to strain with periodic overload. In addition, the prediction method of the fatigue life for the variable thermal strain at the mixing tee was discussed. It was shown the crack growth rate increased after an overload for both cases of tensile and compressive overloads. The effective strain amplitude increased after the application of a single overload. The fatigue life curve was modified by considering the increment of the effective strain range. The fatigue damage recalculated using the modified fatigue life curve was larger than 1.0 except in a few cases. The fatigue life could be assessed conservatively for variable strain at the mixing tee using the developed fatigue curve and Miner’s rule.


Sign in / Sign up

Export Citation Format

Share Document