scholarly journals Effect of Trace Yttrium Addition and Heat Treatment on the Microstructure and Mechanical Properties of As-Cast ADC12 Aluminum Alloy

2018 ◽  
Vol 9 (1) ◽  
pp. 53 ◽  
Author(s):  
Jianlong Liu ◽  
Qingjie Wu ◽  
Hong Yan ◽  
Songgen Zhong ◽  
Zhixiang Huang

The effects of rare earth yttrium (Y) additions and the heat treatment process on the microstructure and mechanical properties of as-cast ADC12 aluminum alloy have been investigated. The results showed that the primary Si crystals were significantly refined from long axis to fibrous or granular when the Y content was 0.2 wt%. Compared to the matrix, the mean area and aspect ratio were decreased by 92% and 75%, respectively. Moreover, the Si and Fe-rich phases were spheroidized and refined with a small average size during the solid solution. It was also noted that the copper-rich phases were dissolved into the matrix. Correspondingly, it was found that after metamorphic and heat treatment the ultimate tensile strength (UTS), elongation, and, hardness increased by 81.9%, 69.7%, and 74.8%, respectively, compared to the matrix. The improved mechanical properties can primarily be attributed to the optimization of the microstructure and the refinement of various phases.

2015 ◽  
Vol 817 ◽  
pp. 212-218
Author(s):  
Xiao Mao Zheng ◽  
Da Tong Zhang

Effect of post-welded heat treatment (PWHT) on the microstructure and mechanical properties of friction stir welded 7A04-O aluminum alloy was investigated. Solution heat treatment (ST) and artificial aging (T6) were given to specimens to improve the mechanical properties of the joints. The results show that defect-free joint was obtained via FSW and the microstructure of nugget zone was characterized by fine and equiaxed grains. After ST, most second phases dissolve in the matrix and the α-Al grains became coarse. Second phases precipitated in the α-Al matrix uniformly after T6 treatment. The Vickers hardness test shows that PWHT made the hardness distribution of the joints more evenly. The tensile test results indicate that the tensile strength of the joint increased from 228 MPa (in as-welded condition) to 440 MPa and 528 MPa after ST and T6 treatment respectively, but the elongation decreased to a certain extent. SEM fracture morphologies indicate that the joint failed through ductile fracture for the as-welded and ST states, and failed in a mixture mode of brittle fracture and ductile fracture for the T6 state.


2010 ◽  
Vol 667-669 ◽  
pp. 457-461
Author(s):  
Wei Guo ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Tao Peng ◽  
Xin Tao Liu ◽  
...  

Cyclic channel die compression (CCDC) of AZ31-1.7 wt.% Si alloy was performed up to 5 passes at 623 K in order to investigate the microstructure and mechanical properties of compressed alloys. The results show that multi-pass CCDC is very effective to refine the matrix grain and Mg2Si phases. After the alloy is processed for 5 passes, the mean grain size decreases from 300 μm of as-cast to 8 μm. Both dendritic and Chinese script type Mg2Si phases break into small polygonal pieces and distribute uniformly in the matrix. The tensile strength increases prominently from 118 MPa to 216 MPa, whereas the hardness of alloy deformed 5 passes only increase by 8.4% compared with as-cast state.


2015 ◽  
Vol 60 (3) ◽  
pp. 1813-1818
Author(s):  
J. Piątkowski ◽  
T. Matuła

Abstract In the paper results of the microstructure and mechanical properties (HB, Rm and R0,2) of AlSi17Cu5 alloy, subjected by solution heat treatment (500ºC/6h/woda) and aging (200ºC/16h/piec) are presented. In next step the alloy was modified and heated significantly above the Tliq temperature (separately and together). It was found that the increase in the strength properties of the tested alloy after heat treatment compared to alloys without solution heat treatment and aging was due to precipitation hardening. The applied aging treatment of ingots (preceded by solution heat treatment), causes not only increase in concentration in α(Al) solid solution, but also a favorable change of the primary Si crystals morphology. During stereological measurements significant size reduction and change in the morphology of hypereutectic silicon crystals ware found. This effects can be further enhanced by overheating the alloy to a temperature of 920ºC and rapid cooling before casting of the alloy.


Sign in / Sign up

Export Citation Format

Share Document