Microstructure and Mechanical Performance of AZ31-1.7 Wt.% Si Alloy Processed by Cyclic Channel Die Compression

2010 ◽  
Vol 667-669 ◽  
pp. 457-461
Author(s):  
Wei Guo ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Tao Peng ◽  
Xin Tao Liu ◽  
...  

Cyclic channel die compression (CCDC) of AZ31-1.7 wt.% Si alloy was performed up to 5 passes at 623 K in order to investigate the microstructure and mechanical properties of compressed alloys. The results show that multi-pass CCDC is very effective to refine the matrix grain and Mg2Si phases. After the alloy is processed for 5 passes, the mean grain size decreases from 300 μm of as-cast to 8 μm. Both dendritic and Chinese script type Mg2Si phases break into small polygonal pieces and distribute uniformly in the matrix. The tensile strength increases prominently from 118 MPa to 216 MPa, whereas the hardness of alloy deformed 5 passes only increase by 8.4% compared with as-cast state.

2012 ◽  
Vol 602-604 ◽  
pp. 602-607
Author(s):  
Ping Wang ◽  
Fu Yin Han ◽  
Yong Sheng Wang ◽  
Lu Geng ◽  
Shao Feng Meng ◽  
...  

The microstructure and mechanical properties of AZ61-4Si magnesium alloy before and after equal channel angular processing (ECAP) were studied. Results show that the matrix α-Mg and divorced eutectic β-Mg17Al12are refined and chinese script type Mg2Si phases are broken to dispersed particles after ECAP. The mechanical properties of the alloy after ECAP are significantly improved. After 4 passes of ECAP, the yield strength is increased from 50MPa to 109 MPa, tensile strength from 129MPa to 237MPa, elongation from 6% to 22%, and hardness from 61.2HBS to71.5HBS. The modification mechanism for microstructure and mechanical properties of the experimental alloy by ECAP was analyzed.


2012 ◽  
Vol 706-709 ◽  
pp. 1261-1266 ◽  
Author(s):  
Wei Guo ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Xin Tao Liu ◽  
Hao Zhou

Repetitive upsetting (RU) was applied to a commercial AZ31 Mg alloy. The samples were processed at temperatures of 230 °C, 250 °C and 300 °C up to 3 passes. Effects of processing temperature on the microstructure and mechanical properties were investigated. The results indicate that the microstructure was effectively refined by RU and an average grain size of ~1.9 μm was obtained at 250 °C. Increasing the temperature resulted in larger mean grain size and higher microstructural homogeneity. Both the strength and hardness were significantly improved. It was also found that increasing the processing temperature led to increase in the strength but decrease in the ductility. The sample after RU 3 passes at 230 °C had tensile strength of 330 MPa compared with 173 MPa prior to the processing.


2013 ◽  
Vol 747-748 ◽  
pp. 289-294
Author(s):  
Yi Zhang ◽  
Fu Yin Han ◽  
Yong Sheng Wang ◽  
Wei Liang ◽  
Ping Wang ◽  
...  

The Mg-6Zn-2Si alloy was processed by equal channel angular pressing (ECAP) for 4 passes and 8 passes at 573K, and the microstructure and mechanical properties of the alloy before and after ECAP were studied. The results show that Chinese script type interphase of Mg2Si was crushed into dispersed particles, and significant grain refinement was also introduced to the matrix phase (α-Mg) and Mg51Zn20 phase after 4 passes of ECAP. The yield strength was increased by 180%, elongation by 140% and tensile strength by 75%. The microstructure and mechanical properties remained reasonably constant between 4 and 8 passes of ECAP. The mechanism of improvement on microstructure and mechanical properties of the experimental alloy by subjecting ECAP was also investigated.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 334
Author(s):  
Aidong Xia ◽  
Jie Yin ◽  
Xiao Chen ◽  
Zhengren Huang ◽  
Xuejian Liu ◽  
...  

In this work, a (SiC-AlN)/ZrB2 composite with outstanding mechanical properties was prepared by using polymer-derived ceramics (PDCs) and hot-pressing technique. Flexural strength reached up to 460 ± 41 MPa, while AlN and ZrB2 contents were 10 wt%, and 15 wt%, respectively, under a hot-pressing temperature of 2000 °C. XRD pattern-evidenced SiC generated by pyrolysis of polycarbosilane (PCS) was mainly composed by 2H-SiC and 4H-SiC, both belonging to α-SiC. Micron-level ZrB2 secondary phase was observed inside the (SiC-AlN)/ZrB2 composite, while the mean grain size (MGS) of SiC-AlN matrix was approximately 97 nm. This unique nano-micron hybrid microstructure enhanced the mechanical properties. The present investigation provided a feasible tactic for strengthening ceramics from PDCs raw materials.


2017 ◽  
Vol 898 ◽  
pp. 124-130 ◽  
Author(s):  
Shu Min Xu ◽  
Xin Ying Teng ◽  
Xing Jing Ge ◽  
Jin Yang Zhang

In this paper, the microstructure and mechanical properties of the as-cast and heat treatment of Mg-Zn-Nd alloy was investigated. The alloy was manufactured by a conventional casting method, and then subjected to a heat treatment. The results showed that the microstructure of as-cast alloy was comprised of α-Mg matrix and Mg12Nd phase. With increase of Nd content, the grain size gradually decreased from 25.38 μm to 9.82 μm. The ultimate tensile strength and elongation at room temperature of the Mg94Zn2Nd4 alloy can be reached to 219.63 MPa and 5.31%. After heat treatment, part of the second phase dissolved into the magnesium matrix and the grain size became a little larger than that of the as-cast. The ultimate tensile strength was declined by about 2.5%, and the elongation was increased to 5.47%.


2018 ◽  
Vol 9 (1) ◽  
pp. 53 ◽  
Author(s):  
Jianlong Liu ◽  
Qingjie Wu ◽  
Hong Yan ◽  
Songgen Zhong ◽  
Zhixiang Huang

The effects of rare earth yttrium (Y) additions and the heat treatment process on the microstructure and mechanical properties of as-cast ADC12 aluminum alloy have been investigated. The results showed that the primary Si crystals were significantly refined from long axis to fibrous or granular when the Y content was 0.2 wt%. Compared to the matrix, the mean area and aspect ratio were decreased by 92% and 75%, respectively. Moreover, the Si and Fe-rich phases were spheroidized and refined with a small average size during the solid solution. It was also noted that the copper-rich phases were dissolved into the matrix. Correspondingly, it was found that after metamorphic and heat treatment the ultimate tensile strength (UTS), elongation, and, hardness increased by 81.9%, 69.7%, and 74.8%, respectively, compared to the matrix. The improved mechanical properties can primarily be attributed to the optimization of the microstructure and the refinement of various phases.


2010 ◽  
Vol 150-151 ◽  
pp. 1358-1363
Author(s):  
Bin Fang ◽  
Chuan Zhen Huang ◽  
Chong Hai Xu ◽  
Sheng Sun

The fabrication is a key process for the preparation of ceramic tool materials, which governs the mechanical properties of ceramic tool materials under the condition of the same compositions. A computer simulation coupled with fabrication temperature for the hot-pressing process of single-phase ceramic tool materials has been developed using a two-dimensional hexagon lattice model mapped from the realistic microstructure without considering the presence of pores. The fabrication of single-phase Al2O3 is simulated. The mean grain size of simulated microstructure by Monte Carlo Potts model integrated with fabrication temperature increases with an increase in fabrication temperature, which is consistent with the experiment results.


2011 ◽  
Vol 704-705 ◽  
pp. 1095-1099
Author(s):  
Peng Liu ◽  
Hao Ran Geng ◽  
Zhen Qing Wang ◽  
Jian Rong Zhu ◽  
Fu Sen Pan ◽  
...  

Effects of AlN addition on the microstructure and mechanical properties of as-cast Mg-Al-Zn magnesium alloy were investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and tensile testing. Five different samples were made with different amounts of AlN(0wt%, 0.12wt%, 0.30wt%, 0.48wt%, 0. 60wt%). The results show that the phases of as-cast alloy are composed of α-Mg,β-Mg17Al12. The addition of AlN suppressed the precipitation of the β-phase. And, with the increase of AlN content, the microstructure of β-phase was changed from the reticulum to fine grains. When AlN content was up to 0.48wt% in the alloy, the β-phase became most uniform distribution. After adding 0.3wt% AlN to Al-Mg-Zn alloy, the average alloy grain size reduced from 102μm to 35μm ,the tensile strength of alloy was the highest. The average tensile strength increased from 139MPa to 169.91MPa, the hardness increased from 77.7HB to 98.4HB, but the elongation changes indistinctively. However, when more amount of AlN was added, the average alloy grain size did not reduce sequentially and increased to 50μm by adding 0.6wt% AlN and the β-phase became a little more. Keywords: Al-Mg-Zn alloy; AlN; β-Mg17Al12; Tensile strength


1995 ◽  
Vol 400 ◽  
Author(s):  
H. Van Swygenhoven ◽  
W. Wagner ◽  
J. Löffler

AbstractMechanical properties of nanostructured intermetallic Ni3Al synthesized by the inert-gas condensation technique are studied by means of instrumental indentation using the ICT-CSEMEX indenter. This instrument is a microindenter which continously measures load and displacement. Load-displacement curves are performed as function of grain size, consolidation- and annealing temperature. The mean grain size of the samples are studied by means of x-ray diffraction and small-angle neutron scattering.


2018 ◽  
Vol 37 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Hansong Xue ◽  
Xinyu Li ◽  
Weina Zhang ◽  
Zhihui Xing ◽  
Jinsong Rao ◽  
...  

AbstractThe effects of Bi on the microstructure and mechanical properties of AZ80-2Sn alloy were investigated. The results show that the addition of Bi within the as-cast AZ80-2Sn alloy promotes the formation of Mg3Bi2 phase, which can refine the grains and make the eutectic phases discontinuous. The addition of 0.5 % Bi within the as-extruded AZ80-2Sn alloy, the average grain size decreases to 12 μm and the fine granular Mg17Al12 and Mg3Bi2 phases are dispersed in the α-Mg matrix. With an increase in Bi content, the Mg17Al12 and Mg3Bi2 phases become coarsened and the grain size increases. The as-extruded AZ80-2Sn-0.5 %Bi alloy has the optimal properties, and the ultimate tensile strength, yield strength and elongation are 379.6 MPa, 247.1 MPa and 14.8 %, respectively.


Sign in / Sign up

Export Citation Format

Share Document