scholarly journals Direct Multistep Wind Speed Forecasting Using LSTM Neural Network Combining EEMD and Fuzzy Entropy

2019 ◽  
Vol 9 (1) ◽  
pp. 126 ◽  
Author(s):  
Qiong Qin ◽  
Xu Lai ◽  
Jin Zou

Accurate wind speed forecasting is of great significance for a reliable and secure power generation system. In order to improve forecasting accuracy, this paper introduces the LSTM neural network and proposes a wind speed statistical forecasting method based on the EEMD-FuzzyEn-LSTMNN model. Moreover, the MIC is used to analyze the autocorrelation of wind speed series, and the predictable time of wind speed statistical forecasting method for direct multistep forecasting is taken as four hours. In the EEMD-FuzzyEn-LSTMNN model, the original wind speed series is firstly decomposed into a series of components by using EEMD. Then, the FuzzyEn is used to calculate the complexity of each component, and the components with similar FuzzyEn values are classified into one group. Finally, the LSTMNN model is used to forecast each subsequence after classification. The forecasting result of the original wind speed series is obtained by aggregating the forecasting result of each subsequence. Three forecasting cases under different terrain conditions were selected to validate the proposed model, and the BPNN model, the SVM model and the LSTMNN model were used for comparison. The experimental results show that the forecasting accuracy of the EEMD-FuzzyEn-LSTMNN model is much higher than that of the other three models.

2012 ◽  
Vol 217-219 ◽  
pp. 2654-2657
Author(s):  
Jian Zhang ◽  
Lun Nong Tan

The wind speed forecasting accuracy of artificial neural network(ANN) and grey model(GM) is poorly satisfied. Thus, we proposed a new variable weight combined (VWC) model, which was based on the ANN and GM, to improve the wind speed forecasting accuracy. VWC used weighting coefficient of different time to fit the two single models. The forecasting accuracy of VWC is higher than either of the two single models, and is also higher than the unchanged weight combination(UWC) model. Our data show a new method for wind speed forecasting and the reduction of auxiliary service costs of wind farms.


2011 ◽  
Vol 24 (7) ◽  
pp. 1048-1056 ◽  
Author(s):  
Zhen-hai Guo ◽  
Jie Wu ◽  
Hai-yan Lu ◽  
Jian-zhou Wang

2018 ◽  
Vol 10 (10) ◽  
pp. 3693 ◽  
Author(s):  
Yuansheng Huang ◽  
Shijian Liu ◽  
Lei Yang

Short-term wind speed prediction is of cardinal significance for maximization of wind power utilization. However, the strong intermittency and volatility of wind speed pose a challenge to the wind speed prediction model. To improve the accuracy of wind speed prediction, a novel model using the ensemble empirical mode decomposition (EEMD) method and the combination forecasting method for Gaussian process regression (GPR) and the long short-term memory (LSTM) neural network based on the variance-covariance method is proposed. In the proposed model, the EEMD method is employed to decompose the original data of wind speed series into several intrinsic mode functions (IMFs). Then, the LSTM neural network and the GPR method are utilized to predict the IMFs, respectively. Lastly, based on the IMFs’ prediction results with the two forecasting methods, the variance-covariance method can determine the weight of the two forecasting methods and offer a combination forecasting result. The experimental results from two forecasting cases in Zhangjiakou, China, indicate that the proposed approach outperforms other compared wind speed forecasting methods.


2018 ◽  
Vol 8 (10) ◽  
pp. 1754 ◽  
Author(s):  
Tongxiang Liu ◽  
Shenzhong Liu ◽  
Jiani Heng ◽  
Yuyang Gao

Wind speed forecasting plays a crucial role in improving the efficiency of wind farms, and increases the competitive advantage of wind power in the global electricity market. Many forecasting models have been proposed, aiming to enhance the forecast performance. However, some traditional models used in our experiment have the drawback of ignoring the importance of data preprocessing and the necessity of parameter optimization, which often results in poor forecasting performance. Therefore, in order to achieve a more satisfying performance in forecasting wind speed data, a new short-term wind speed forecasting method which consists of Ensemble Empirical Mode Decomposition (EEMD) for data preprocessing, and the Support Vector Machine (SVM)—whose key parameters are optimized by the Cuckoo Search Algorithm (CSO)—is developed in this paper. This method avoids the shortcomings of some traditional models and effectively enhances the forecasting ability. To test the prediction ability of the proposed model, 10 min wind speed data from wind farms in Shandong Province, China, are used for conducting experiments. The experimental results indicate that the proposed model cannot only improve the forecasting accuracy, but can also be an effective tool in assisting the management of wind power plants.


2014 ◽  
Vol 651-653 ◽  
pp. 1117-1122
Author(s):  
Zheng Ning Fu ◽  
Hong Wen Xie

Wind speed forecasting plays a significant role to the operation of wind power plants and power systems. An accurate forecasting on wind power can effectively relieve or avoid the negative impact of wind power plants on power systems and enhance the competition of wind power plants in electric power market. Based on a fuzzy neural network (FNN), a method of wind speed forecasting is presented in this paper. By mining historical data as the learning stylebook, the fuzzy neural network (FNN) forecasts the wind speed. The simulation results show that this method can improve the accuracy of wind speed forecasting effectively.


Sign in / Sign up

Export Citation Format

Share Document