scholarly journals Deformation Analysis of Large-Scale Rock Slopes Considering the Effect of Microseismic Events

2019 ◽  
Vol 9 (16) ◽  
pp. 3409 ◽  
Author(s):  
Linlu Dong ◽  
Ying Yang ◽  
Bo Qian ◽  
Yaosheng Tan ◽  
Hailong Sun ◽  
...  

To research the macroscopic deformation of rock microseismic damage, a high-precision microseismic monitoring system was established on the left bank slope of the Baihetan hydropower station in Southwestern China. Based on the microseismic monitoring and field deformation data, the seismic source radius was applied to characterize the rock fracture scale. Numerical simulations introduced the rock micro-fracture information into the three-dimensional numerical model of the left bank slope and established the damage constitutive model. The unloading deformation process of the left bank abutment rock mass is described by numerical calculations. The feedback analysis method considering the effect of microseismic damage is preliminary exploratory research, which provides a new idea for the stability analysis of similar high rock slopes.

Author(s):  
Ganghai Huang ◽  
Yuanzhen Xu ◽  
Xiaofeng Chen ◽  
Jianjun Ma ◽  
Shu Zhang

The efficiency of contact search is one of the key factors related to the computational efficiency of three-dimensional sphere discontinuous deformation analysis (3D SDDA). This paper proposes an efficient contact search algorithm, called box search algorithm (BSA), for 3D SDDA. The implementation steps and data structure for BSA are designed, with a case study being conducted to verify its efficiency. The data structure also has been improved for parallelizing the computation in contact search. For the demonstration of the proposed algorithm (BSA), six cases with various sphere numbers are simulated. Simulation results show that the time consumed in contact search using BSA (CTofBSA) is much less than that by the direct search algorithm (DSA) (CTofDSA). For the case with 12,000 spheres, CTofBSA is 1.1[Formula: see text]h, which is only 1.3% of CTofDSA (84.62[Formula: see text]h). In addition, the proportion of the computation quantity of contact search in the entire computation (Pcs) is 91.3% by using DSA, while this value by BSA is only 12.4%, which demonstrates the contribution of BSA. The efficiency brought about by BSA (time consumed and computation quantity) may enable 3D SDDA to simulate large-scale problems.


2013 ◽  
Vol 353-356 ◽  
pp. 872-876 ◽  
Author(s):  
Gang He ◽  
Nu Wen Xu ◽  
Chun Sha ◽  
Li Tian

In order to real time monitor and analyze the rock fracturing due to continuous construction and consolidation at the left slope of Jinping I hydropower station, southwest of China, a microseismic monitoring system was conducted and an optimal design for the sensor arrays was investigated. The sensor array was designed on the basis of P method and Powell algorithm. The artificial fixed blasting tests were applied to adjust the positioning accuracy of the monitoring system. The results show that the location error of seismic source is less than 12 m in the scope of the sensor array, which demonstrates the monitoring system has high positioning g accuracy. The contour of source location shows that the location errors near the main tunnels at the left bank slope is below 6 m. Signals from 689 microseismic events with moment magnitude ranging from -2.1 to -0.2 were recorded during the first year monitoring period from June 15, 2009. The spatial distribution of microseismicity can identify and delineate the potential failure at the left bank slope, which provides some references for the future excavation and consolidation of the hydropower station.


2011 ◽  
Vol 90-93 ◽  
pp. 2372-2379
Author(s):  
Li Fang Zou ◽  
Wei Ya Xu ◽  
Chong Shi

Xiazanri Slope is a large-scale deposit slope located at the left bank of Liyuan hydropower station in Southwest China. The construction of the water intake there will form a very high excavation slope. Possible failure modes are analyzed based on geological conditions. Numerical simulation is conducted in FLAC3D to obtain the deformation and failure characteristics of slope under excavation and normal water table conditions. Strength reduction method is used to obtain factor of safety. Results show the overall deposit is stable and attention should be paid to local parts.


2016 ◽  
Vol 50 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Feng Dai ◽  
Biao Li ◽  
Nuwen Xu ◽  
Guotao Meng ◽  
Jiayao Wu ◽  
...  

2016 ◽  
Vol 50 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Deepak P Adhikary ◽  
Marc Elmouttie ◽  
Vincent Lemiale ◽  
Brett Poulsen

 Science’s understanding of the failure mechanisms of large natural and engineered slopes has been improved considerably over the past 15 years. Significant improvements have been realized in innovative methods of data acquisition through field measurement and monitoring, as well as numerical modelling techniques. However, inadequate understanding of complex geology and landslide processes means that any interpretation of landslide data remains mostly subjective. This causes major uncertainty in landslide risk assessment. Over the past decade, Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO; http://www.csiro.au/) has developed novel techniques to facilitate efficient assessment of rock slope stability. These include SirovisionTM, Siromodel, and three CSIRO numerical codes: CSIRO‑SPH, CSIRO‑DEM and CSIRO‑COSFLOW. SirovisionTM is a geological/geotechnical mapping and analysis system that generates accurate, scaled 3D images of rock faces from stereo photographs of exposed rock surfaces, allowing for rapid rock mass structural mapping. Siromodel is a polyhedral modelling system that reads the SirovisionTM data, generates discrete fracture networks (DFN) and performs polyhedral (rock block) modelling and a first‑pass stability analysis. CSIRO‑SPH, CSIRO‑DEM and CSIRO‑COSFLOW are all used for detailed stress‑deformation analysis of rock slopes; however, each code has its own problem‑specific advantage. CSIRO‑SPH is suited for large deformation problems, and can simulate large scale fluid flow problems, such as modelling a dam breakage. CSIRO‑DEM is suited for rock breakage process analysis, and assessment of the runout distance of failure debris. CSIRO‑COSFLOW is designed specifically for efficient, accurate stress‑deformation analysis of stability of structures on bedded sedimentary rocks, where failures along the preexisting bedding planes and through the intact rock layers occur simultaneously. 


Sign in / Sign up

Export Citation Format

Share Document