scholarly journals Calibration of Design Buckling Curves for Lateral-Torsional Buckling of Cantilever Beams Made of Glass—Experimental and Numerical Investigations

2019 ◽  
Vol 9 (16) ◽  
pp. 3432
Author(s):  
Ralph Timmers ◽  
Tobias Neulichedl

Using glass as a primary load-carrying element is becoming more and more popular in architecture. Probably the most used application is the single-span girder, but another important system is the cantilever beam, which is widely used, e.g., as a canopy in front of an entrance. Research on the lateral-torsional buckling behavior of glass beams has been typically performed on single-span girders. As a consequence, the design buckling curves provided in literature are usually too conservative for the widely used case of a cantilever beam, which is also related to the loading situation. Therefore, experimental and numerical investigations have been performed for this special case. Based on the obtained results, design buckling curves have been developed and resulted in being more economical than the curves already given in the literature. Among others, information on the shape and size of the real imperfections, a testing device for cantilever beams, and experimentally and numerically obtained load-deflection curves are additional outcomes of the investigations presented here.

Author(s):  
Mutlu Secer ◽  
Ertugrul Turker Uzun

Contemporary structural design approaches necessitates ways to determine realistic behavior of structures. For this purpose, inelastic ultimate load analysis methods are used widely since strength and stability of whole structure can be represented. In this study, a numerical method is proposed for determining inelastic ultimate load capacity of steel frames considering lateral torsional buckling behavior under distributed loads. In the analyses, inelastic material behavior, second-order effects and residual stresses of the structural frame system and its members are taken into account. Additionally, lateral torsional buckling behavior is considered in the analysis using finite difference method and it is used for determining the structural load carrying capacity of steel frames. Consequently, the problem associated with flexural capacity decreases due to lateral torsional buckling is precisely considered in the load increment steps of inelastic ultimate load analysis. In order to validate the proposed method, numerical examples from the literature are calculated considering the proposed method, AISC 360-16 design specification equations and approaches from the literature. Results of the numerical examples show that lateral torsional buckling is a key issue in determining structural load carrying capacity. Thus, proposed analysis method is shown to be an efficient and consistent tool for inelastic ultimate load analysis.


2020 ◽  
Vol 20 (07) ◽  
pp. 2050080
Author(s):  
Xiaokun Huang ◽  
Mingzhe Cui ◽  
Qiang Liu ◽  
Jianguo Nie

In this paper, the lateral torsional buckling (LTB) behavior of multi-layered long-span laminated glass (LG) beams is investigated through full-scale model test and numerical simulation. In the test program, the LG beams consisting of up to four glass plies and spanning 5000[Formula: see text]mm are constructed and tested. The load-displacement curves and development of strain in glass plies are recorded, based on which the deformation and stress state of buckled LG beams are analyzed, and the strength checking criterion is provided. The test results are also used to determine the shape and amplitude of initial imperfection through statistical analysis and to validate a numerical model based on the finite element method (FEM). Parametric analysis based on the FEM model is then conducted to investigate influential factors on the LTB resistance of LG beams, among which the influence of shape and amplitude of initial imperfection is emphasized. For the LTB design of LG beams, the applicability of existing formula to determine the critical buckling moment through effective stiffnesses is evaluated for multi-layered LG beams with the test and numerical results. Finally, the design buckling curves adopting the Ayrton–Perry formula (APF) are proposed and validated for LG beams categorized with glass type and load duration.


2004 ◽  
Vol 274-276 ◽  
pp. 981-986 ◽  
Author(s):  
Peter Buffel ◽  
Guy Lagae ◽  
Rudy Van Impe ◽  
Wesley Vanlaere ◽  
Jan Belis

2014 ◽  
Vol 969 ◽  
pp. 259-264
Author(s):  
Zdenek Kala ◽  
Jan Valeš

Some particular and selected problems aimed at ultimate limit state and probability-based studies pertaining to lateral-torsional buckling of steel beams are described. Stochastic analysis of the ultimate limit state of a slender member IPE220 under bending was elaborated. The values of non-dimensional slenderness for which the statistical characteristics of random load-carrying capacity are maximal were determined. The stochastic computational model was created in the programme ANSYS. Geometric nonlinear solution was employed. In the conclusion of the article, the question of the random effect of the initial rotation of the cross-section on the load-carrying capacity is discussed.


Sign in / Sign up

Export Citation Format

Share Document