scholarly journals Effects of Cement–Mineral Filler on Asphalt Mixture Performance under Different Aging Procedures

2019 ◽  
Vol 9 (18) ◽  
pp. 3785 ◽  
Author(s):  
Zhenyang Fan ◽  
Xuancang Wang ◽  
Zhuo Zhang ◽  
Yi Zhang

Cement-containing mineral powder can effectively improve the moisture stability of an asphalt mixture; therefore, this study systematically summarizes the research status of cement–mineral fillers on the performance of an asphalt mixture and determines the limitations of related studies. In this study, long-term performance tests of styrene-butadiene-styrene- (SBS)-modified asphalt mixtures are designed and evaluated with different blending ratios of the cement–mineral powder under three aging conditions. Moreover, the effect of the cement–mineral composite filler on long-term performance of the asphalt mixture using different blending ratios is determined. Cement improves the high-temperature performance and water stability of asphalt mixtures, but only for certain aging conditions. Considering the regulations for the road performance of asphalt mixtures for three aging conditions, as well as long-term performance considerations, the results indicated that the mass ratio of Portland cement to mineral powder must not exceed 2:2. Low-temperature bending and splitting tensile tests confirmed that an excessive amount of cement filler will embrittle the modified asphalt mixture during long-term aging, thereby deteriorating the tensile properties. The mechanism by which the filler influences the performance of the asphalt mixture should be further studied from the perspective of microscopic and molecular dynamics.

2013 ◽  
Vol 438-439 ◽  
pp. 383-386
Author(s):  
Ning Li Li ◽  
Xin Po Zhao ◽  
Cai Li Zhang ◽  
Qing Yi Xiao ◽  
Hu Hui Li

This article studies the low-temperature anti-cracking properties of plain asphalt mixtures and rubber-modified asphalt mixtures at different aging condition. Laboratory flexural test was conducted on the beam specimens of plain asphalt mixtures and rubber-modified asphalt mixtures. Experiment results indicate that rubber-modified asphalt mixtures have superior low-temperature anti-cracking performance than that of plain asphalt mixtures. Compared with the short term oven aging test, the long term oven aging test has more significant effect on the low-temperature anti-cracking of the mixture. In order to better represent the low-temperature anti-cracking of in-service aging asphalt pavement, the long term oven aging test should be used to appraise the low-temperature anti-cracking of asphalt pavements in china.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jian Zhou ◽  
Jing Li ◽  
Guoqiang Liu ◽  
Tao Yang ◽  
Yongli Zhao

To accelerate snow and ice melting, traditional chloride-based salts are spreaded on asphalt pavement surface, causing serious environmental pollution and infrastructure corrosion. For sustained-release snow melting asphalt mixture, the snow melting agent of Mafilon is directly added to asphalt mixture by replacing partial mineral powder to develop a new type of functional asphalt mixture. In this paper, through the Marshall test, immersion Marshall test, rutting test, trabecular bending test, and Cantabro test, the effects of Mafilon addition on asphalt pavement performance is systematically analysed. Meanwhile, salt precipitation rate is measured by conductimetry to estimate effective deicing period of the pavement. Finally, a new experimental device is designed to quantitatively evaluate snow melting effect of sustained-release snow melting asphalt pavement. The experimental results show that replacing 70% of the mineral powder with Mafilon by volume can achieve satisfactory snow melting effect without affecting usability of asphalt pavement.


2015 ◽  
Vol 10 (2) ◽  
pp. 61-68 ◽  
Author(s):  
Marián Dubravský ◽  
Ján Mandula

Abstract In recent years, warm mix asphalt (WMA) is becoming more and more used in the asphalt industry. WMA provide a whole range of benefits, whether economic, environmental and ecological. Lower energy consumption and less pollution is the most advantages of this asphalt mixture. The paper deals with the addition of natural zeolite into the sub base asphalt layers, which is the essential constituent in the construction of the road. Measurement is focused on basic physic – mechanical properties declared according to the catalog data sheets. The aim of this article is to demonstrate the ability of addition the natural zeolite into the all asphalt layers of asphalt pavement. All asphalt mixtures were compared with reference asphalt mixture, which was prepared in reference temperature.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3534
Author(s):  
Anda Ligia Belc ◽  
Erdem Coleri ◽  
Florin Belc ◽  
Ciprian Costescu

The interest in minimising fuel consumption and greenhouse gas emissions among road specialists is increasing. Thus, methods for reducing asphalt concrete mixing and compaction temperatures by a few tens of degrees Celsius without compromising the long-term performance has become a topic of significant interest. This study is focused on the analysis of warm mix asphalt (WMA) prepared with locally available materials in order to determine the suitable technology applicable to the specific traffic and climatic conditions of Romania. WMA was prepared using different warm mix additives (organic additives, chemical additive, and synthetic zeolite) at different mixing and compaction temperatures, and bitumen blends with these additives were analysed by carrying out the dynamic shear rheometer test and evaluating the penetration index. In conclusion it was noted that most additives did not lead to a significant change of bitumen`s characteristics, but the organic additive had a big influence on the bitumen`s properties. The characteristics of WMA are very similar to those of HMA. The mixing and compaction temperatures could be reduced by approximately 40 °C when WMA was blended with the additives without compromising the performance of the asphalt mixture, compared to hot mix asphalt.


2007 ◽  
Vol 13 (4) ◽  
pp. 307-315 ◽  
Author(s):  
Piotr Radziszewski

Permanent deformations, primarily in the form of ruts, are one of the basic asphalt pavement damages impairing its service properties. Application of appropriate asphalt mixtures and binder modification are effective methods for improving asphalt courses resistance. While being manufactured, stored, fitted into a road pavement and during long term service, bitumen binders and asphalt mixtures are subject to continuous unfavourable ageing processes during which pavement courses characteristics change considerably, resistance to permanent deformations being among them. This article presents rut and dynamic creep test results of concrete, SMA (stone mastic asphalt), MNU (thin courses of non‐continuous grain mixtures), Superpave mixture and porous asphalt mixture of two air void content percentages: 15 %, 20 %. Asphalt concrete mixtures, MNU's and porous asphalt mixtures contained elastomer, plastomer and fine rubber modified binders. Samples for laboratory rut tests were made by slab compaction because this method, as the author's previous research had shown, was the closest to ‘in‐situ’ conditions. Resistance to permanent deformations of the examined specimens was evaluated before aging, after technological aging (short term ageing) and after service ageing (long‐term ageing). The test results show that resistance to permanent deformations depends on the kind of asphalt mixture and binder applied. Concrete asphalts with fine rubber modified bitumens and concrete asphalts with 7 % polymer modified binders as well as SMA's and Superpave mixtures with unmodified binders appeared to be most resistant to permanent deformations after a long‐term laboratory ageing. It was proved that the overall evaluation of resistance to permanent deformations could be obtained by rut and creep testing of asphalt mixtures exposed to short‐ and long‐term ageing. Simultaneous determining 4 parameters: maximum rut depth after short‐term ageing, rutting coefficient after operational ageing, stiffness creeping modulus after long‐term ageing and cumulated deformation after short‐term ageing, facilitates full characteristics of modified asphalt mixes designed to be built in the wearing course of a road pavement.


2021 ◽  
Vol 1202 (1) ◽  
pp. 012025
Author(s):  
Mukul Rathore ◽  
Viktors Haritonovs ◽  
Martins Zaumanis

Abstract High content reclaimed asphalt (RA) mixtures have been identified as one of the options to reduce the environmental and economic impacts of pavements construction. However, the process of designing and producing high content RA mixtures is challenging and the asphalt industry have serious concerns towards quality and long-term performance these mixtures. In laboratory, several parameters affect mixture characteristic, and if not controlled, may results into inaccurate estimation of performance. This state- of-the-art study aims to identify critical parameters for high content RA mixture production and highlight the effects of these parameters on mixture performance. The mixing parameters adopted in several laboratory studies have been highlighted and compared. The best practices to mix recycled asphalt in laboratory are reviewed in order to optimize the laboratory mixing. Based on review, important considerations for evaluating laboratory performance have been discussed.


Author(s):  
Tim Aschenbrener ◽  
Nam Tran

The objective of this research was to (1) determine critical requirement(s) for in-place density based on a review of the literature; (2) analyze density test results shared by state highway agencies (SHAs) across the country to identify state specifications that minimize density results failing the identified critical requirement; and (3) document specification parameters that are important to achieve the critical requirement to share with SHAs that are interested in improving their density specifications. Based on prior research, the minimum density of an asphalt mixture should be 92.0% of the theoretical maximum specific gravity, as density below this critical level would have a detrimental effect on the long-term performance of the mix. Twelve SHAs identified thus far in this research have successfully adopted density specifications that minimize the number of test results below the 92.0% threshold. The statewide density results below the threshold in these states ranged from 3.1 to 11.0%. The density specifications in the 12 states play an important role in achieving these results as discussed in the paper. The case study presented in this paper showed that the density results below the identified threshold for a state in the Federal Highway Administration (FHWA) Demonstration Project decreased from 20.0% to only 5.7% with an improved density specification. There are likely more states with test results like those identified, and they will be added as they are identified in the future. In addition, more states will be added as they make improvements to their density specifications through this effort.


Sign in / Sign up

Export Citation Format

Share Document