scholarly journals Fracture Analysis for a Crack in Orthotropic Material Subjected to Combined 2i-Order Symmetrical Thermal Flux and 2j-Order Symmetrical Mechanical Loading

2021 ◽  
Vol 2 (1) ◽  
pp. 127-146
Author(s):  
Bing Wu ◽  
Daren Peng ◽  
Rhys Jones

The problems of crack formation in orthotropic materials under 2i order polynomial function heat flow and 2j order polynomial function mechanical loading are considered. An extended local insulation crack model is proposed, and fracture analysis is carried out for the above problems. Utilizing Fourier transform technique (FTT) and principle of superposition, the jumps of temperature, elastic displacements on the crack, and so on are obtained. The advantage of this analysis is that the explicit closed form solutions of main parameters in classical fracture mechanics, i.e., the stress intensity factor, the energy release rate, and the energy density have been presented. A simple example is used to demonstrate the method proposed in this paper. The analysis results show that the non-dimensional thermal conductivity and the combined ratio of the heat flux per thickness perpendicular to the crack surface to the mechanical load have a great influence on the calculation of fracture parameters. Only when they meet certain conditions can the correct fracture parameter calculation results be obtained.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
B. Wu ◽  
Q. A. Huang ◽  
D. Peng ◽  
X. Y. Yang ◽  
Z. Feng

An improved partially permeable crack model is put forward to deal with the problem of a single crack embedded in an orthotropic or isotropic material under combined unsymmetric thermal flux and symmetric linear mechanical loading. With the application of the Fourier transform technique (FTT), the thermoelastic field is given in a closed form. Numerical results show combined unsymmetric linear thermal flux, symmetric linear mechanical loading, and dimensionless thermal conductivity, and the coefficient has influences on fracture parameters. For the improved partially permeable crack, the mode II stress intensity factor and the energy release rate might be zero or positive under combined unsymmetric thermal flux and symmetric linear mechanical loading. Therefore, closure of the crack tip region need not be considered under combined unsymmetric thermal flux and symmetric linear mechanical loading when making use of fracture parameters as a criterion.


2008 ◽  
Vol 75 (1) ◽  
Author(s):  
Q. Li ◽  
Y. H. Chen

A semi-permeable interface crack in infinite elastic dielectric/piezoelectric bimaterials under combined electric and mechanical loading is studied by using the Stroh complex variable theory. Attention is focused on the influence induced from the permittivity of the medium inside the crack gap on the near-tip singularity and on the energy release rate (ERR). Thirty five kinds of such bimaterials are considered, which are constructed by five kinds of elastic dielectrics and seven kinds of piezoelectrics, respectively. Numerical results for the interface crack tip singularities are calculated. We demonstrate that, whatever the dielectric phase is much softer or much harder than the piezoelectric phase, the structure of the singular field near the semi-permeable interface crack tip in such bimaterials always consists of the singularity r−1∕2 and a pair of oscillatory singularities r−1∕2±iε. Calculated values of the oscillatory index ε for the 35 kinds of bimaterials are presented in tables, which are always within the range between 0.046 and 0.088. Energy analyses for five kinds of such bimaterials constructed by PZT-4 and the five kinds of elastic dielectrics are studied in more detail under four different cases: (i) the crack is electrically conducting, (ii) the crack gap is filled with air/vacuum, (iii) the crack gap is filled with silicon oil, and (iv) the crack is electrically impermeable. Detailed comparisons on the variable tendencies of the crack tip ERR against the applied electric field are given under some practical electromechanical loading levels. We conclude that the different values of the permittivity have no influence on the crack tip singularity but have significant influences on the crack tip ERR. We also conclude that the previous investigations under the impermeable crack model are incorrect since the results of the ERR for the impermeable crack show significant discrepancies from those for the semi-permeable crack, whereas the previous investigations under the conducting crack model may be accepted in a tolerant way since the results of the ERR show very small discrepancies from those for the semi-permeable crack, especially when the crack gap is filled with silicon oil. In all cases under consideration the curves of the ERR for silicon oil are more likely tending to those for the conducting crack rather than to those for air or vacuum. Finally, we conclude that the variable tendencies of the ERR against the applied electric field have an interesting load-dependent feature when the applied mechanical loading increases. This feature is due to the nonlinear relation between the normal electric displacement component and the applied electromechanical loadings from a quadratic equation.


2011 ◽  
Vol 308-310 ◽  
pp. 2560-2564 ◽  
Author(s):  
Xiang Rong Yuan

A moving fitting method for edge detection is proposed in this work. Polynomial function is used for the curve fitting of the column of pixels near the edge. Proposed method is compared with polynomial fitting method without sub-segment. The comparison shows that even with low order polynomial, the effects of moving fitting are significantly better than that with high order polynomial fitting without sub-segment.


Geophysics ◽  
1999 ◽  
Vol 64 (6) ◽  
pp. 1730-1734 ◽  
Author(s):  
Beatriz Martín‐Atienza ◽  
Juan García‐Abdeslem

New methods for 2-D modeling of gravity anomaly data are developed following an approach that uses both analytic and numerical methods of integration. The forward‐model solution developed here is suitable to calculate the gravity effect caused by a 2-D source body bounded either laterally or vertically by continuous functions. In our models, the density contrast is defined by a second‐order polynomial function of depth and distance along the profile. We present several examples to show that our models are capable of accommodating a broad variety of geologic structures.


2017 ◽  
Vol 20 (K2) ◽  
pp. 5-13
Author(s):  
Minh Ngoc Nguyen ◽  
Nha Thanh Nguyen ◽  
Tinh Quoc Bui ◽  
Thien Tich Truong

This paper presents a novel approach for fracture analysis in two-dimensional orthotropic domain. The proposed method is based on consecutive-interpolation procedure (CIP) and enrichment functions. The CIP were recently introduced as an improvement for standard Finite Element method, such that higher-accurate and higher-continuous solution can be obtained without smoothing operation and without increasing the number of degrees of freedom. To avoid re-meshing, the enrichment functions are employed to mathematically describe the jump in displacement fields and the singularity of stress near crack tip. The accuracy of the method for analysis of cracked body made of orthotropic materials is studied. For that purpose, various examples with different geometries and boundary conditions are considered. The results of stress intensity factors, a key quantity in fracture analysis, are validated by comparing with analytical solutions and numerical solutions available in literatures.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3200 ◽  
Author(s):  
Libor Topolář ◽  
Dalibor Kocáb ◽  
Jiří Šlanhof ◽  
Pavel Schmid ◽  
Petr Daněk ◽  
...  

The paper describes an experiment focusing on the way the material system influences the bond strength of large-format tiles installed on concrete substrate during mechanical loading under conditions that correspond to real-life application. This involves a controllable mechanical load applied over an area of a test model while observing its condition using non-destructive methods (ultrasonic pulse velocity test, acoustic emission method, strain measurement, and acoustic tracing). The model consisted of a concrete slab onto which were mounted four different systems with large-format tiles with the dimensions of 3 m × 1 m. The combinations differed in the thickness of the tile, the adhesive, and whether or not a fabric membrane was included in the adhesive bed. The experiment showed that the loading caused no damage to the ceramic tile. All the detected failures took place in the adhesive layer or in the concrete slab.


2007 ◽  
Vol 353-358 ◽  
pp. 1513-1516
Author(s):  
Rong Feng Liu ◽  
Byeung Gun Nam ◽  
Katsuhiko Watanabe

An electrical nonlinear constitutive model for piezoelectric material is studied in this paper. Electric yielding criterion and yielding effect on CED are investigated. Using the mechanical part of CED as a fracture parameter, it is shown that the predicted fracture loads through FEA for compact tension specimen is in accordance with corresponding experimental results.


2012 ◽  
Vol 35 (7) ◽  
pp. 596-613 ◽  
Author(s):  
Serkan Dag ◽  
Bora Yildirim ◽  
Onur Arslan ◽  
E. Erhan Arman

Sign in / Sign up

Export Citation Format

Share Document