scholarly journals A novel numerical approach for fracture analysis in orthotropic media

2017 ◽  
Vol 20 (K2) ◽  
pp. 5-13
Author(s):  
Minh Ngoc Nguyen ◽  
Nha Thanh Nguyen ◽  
Tinh Quoc Bui ◽  
Thien Tich Truong

This paper presents a novel approach for fracture analysis in two-dimensional orthotropic domain. The proposed method is based on consecutive-interpolation procedure (CIP) and enrichment functions. The CIP were recently introduced as an improvement for standard Finite Element method, such that higher-accurate and higher-continuous solution can be obtained without smoothing operation and without increasing the number of degrees of freedom. To avoid re-meshing, the enrichment functions are employed to mathematically describe the jump in displacement fields and the singularity of stress near crack tip. The accuracy of the method for analysis of cracked body made of orthotropic materials is studied. For that purpose, various examples with different geometries and boundary conditions are considered. The results of stress intensity factors, a key quantity in fracture analysis, are validated by comparing with analytical solutions and numerical solutions available in literatures.

2020 ◽  
Author(s):  
◽  
Uriel Jacket Tresor Demby's

In the context of articulated robotic manipulators, the Forward Kinematics (FK) is a highly non-linear function that maps joint configurations of the robot to poses of its endeffector. Furthermore, while in the most useful cases these functions are neither injective (one-to-one) nor surjective (onto), depending on the robot configuration -- i.e. the sequence of prismatic versus revolute joints, and the number of Degrees of Freedom (DoF) -- the associated Inverse Kinematics (IK) problem may be practically or even theoretically impossible to be solved analytically. Therefore, in the past decades, several approximate methods have been developed for many instances of IK problems. The approximate methods can be divided into two distinct categories: data-driven and numerical approaches. In the first case, data-driven approaches have been successfully used for small workspace domains (e.g., task-driven applications), but not fully explored for large ones, i.e. in task-independent applications where a more general IK is required. Similarly, and despite many successful implementations over the years, numerical solutions may fail if an improper matrix inverse is employed (e.g., Moore-Penrose generalized inverse). In this research, we propose a systematic, robust and accurate numerical solution for the IK problem using the Unit-Consistent (UC) and the Mixed (MX) Inverse methods to invert the Jacobians derived from the Denavit-Hartenberg (D-H) representation of the FK for any robot. As we demonstrate, this approach is robust to whether the system is underdetermined (less than 6 DoF) or overdetermined (more than 6 DoF). We compare the proposed numerical solution to data driven solutions using different robots -- with DoF varying from 3 to 7. We conclude that numerical solutions are easier to implement, faster, and more accurate than most data-driven approaches in the literature, specially for large workspaces as in task-independent applications. We particularly compared the proposed numerical approach against two data-driven approaches: Multi-Layer Perceptron (MLP) and Adaptive Neuro-Fuzzy Inference System (ANFIS), while exploring various architectures of these Neural Networks (NN): i.e. number of inputs, number of outputs, depth, and number of nodes in the hidden layers.


Author(s):  
A. O. Ayhan ◽  
A. C. Kaya ◽  
A. Loghin ◽  
J. H. Laflen ◽  
R. D. McClain ◽  
...  

A methodology for performing two and three-dimensional fracture analyses in orthotropic materials using ANSYS software (“ANSYS”) is presented. The methodology makes use of analytically known crack tip fields in orthotropic materials and is implemented into a general purpose ANSYS macro. The ANSYS analysis, which takes into account the material orthotropy is performed in a regular manner by including the quarter point elements near the crack front. Then, in the post-processing module, the developed macro is run to associate the crack tip displacements with the orthotropic crack tip displacement fields to compute the mixed-mode stress intensity factors. Numerical examples are also presented that demonstrate application and validation of the procedure. These examples include an edge crack in an orthotropic strip and a surface crack in a transversely isotropic plate. The results show how the orthotropic fracture results may differ from those of isotropic fracture analysis. It is also shown that this difference can be dramatically big when the stress analysis is done using the orthotropic properties, whereas the fracture calculations are performed considering the crack tip fields for a crack in an isotropic material.


Author(s):  
Nguyen Dinh Duc ◽  
Dinh Du Nguyen ◽  
Quoc Tinh Bui

This paper reports the application of consecutive-interpolation procedure into four-node quadrilateral elements for analysis of two-dimensional cracked solids made of functionally graded composite plate. Compared to standard finite element method, the recent developed consecutive-interpolation has been shown to possess many desirable features, such as higher accuracy and smooth nodal gradients it still satisfies the Kronecker-delta property and keeps the total number of degrees of freedom unchanged. The discontinuity in displacement fields along the crack faces and stress singularity around the crack tips are mathematically modeled using enrichment functions. The Heaviside function is employed to describe displacement jump, while four branch functions being developed from asymptotic stress fields are taken as basis functions to capture singularities. The interesting characteristic of functionall graded composite plate is the spatial variation of material properties which are intentionally designed to be served for particular purposes. Such variation has to be taken into account during the computation of Stress Intensity Factors (SIFs). Performance of the proposed approach is demonstrated and verified through various numerical examples, in which SIFs are compared with reference solutions derived from other methods available in literatures.


2006 ◽  
Vol 12 (4) ◽  
pp. 319-325 ◽  
Author(s):  
Edvard Michnevič

A new finite element for modelling laminated bending plates was defined based on the effective triangular finite element of the discrete Kirchhoff's theory. The plates can be made of layers arranged in any order and consisting of different but orthotropic materials. The suggested finite element has 6 degrees of freedom in every node, i e 3 linear displacements and 3 rotations about the axis of coordinates. A mathematical model of the element describes stress and strain effects both in the plane of the element or perpendicular to it, except for shear. The suggested element can be used for calculating laminated plates or beams, not subjected to heavy shear stresses. Some numerical case studies are provided, while the results obtained are compared with the well‐known analytical and numerical solutions.


2018 ◽  
Vol 35 (3) ◽  
pp. 305-313 ◽  
Author(s):  
C. Rebiai

ABSTRACTIn this investigation, a new simple triangular strain based membrane element with drilling rotation for 2-D structures analysis is proposed. This new numerical model can be used for linear and dynamic analysis. The triangular element is named SBTE and it has three nodes with three degrees of freedom at each node. The displacements field of this element is based on the assumed functions for the various strains satisfying the compatibility equations. This developed element passed both patch and benchmark tests in the case of bending and shear problems. For the dynamic analysis, lumped mass with implicit/explicit time integration are employed. The obtained numerical results using the developed element converge toward the analytical and numerical solutions in both analyses.


1938 ◽  
Vol 5 (2) ◽  
pp. A61-A66
Author(s):  
Winston M. Dudley

Abstract In 1934 two English investigators (1) published a method for calculating the various modes and frequencies of vibration of a system having several degrees of freedom. Their method, which is based on matrices, greatly shortens the time spent in obtaining numerical solutions in many important problems, notably those with immovable foundations. In this paper is presented a new theorem which (a) makes possible a further reduction of nearly one half in the time required, so that solutions up to 20 deg or more of freedom are now practical and (b) makes it then possible to determine the motion of the system after any initial disturbance in a few minutes, instead of several hours as required by older methods. It is useful in the latter respect whether the modes have been determined by matrix methods, or not. Although the paper gives simpler proofs than any previously published, knowledge of the matrix theory is not required in using the method. Problems are analyzed by a tabular process, in which an ordinary computing machine helps greatly. Comments based on computing experience are given. A simple numerical example has been given elsewhere (1).


2021 ◽  
Vol 10 (5) ◽  
pp. 2285-2294
Author(s):  
A. Kumar ◽  
S. R. Verma

In this paper, a modified Taylor wavelet method (MTWM) is developed for numerical solutions of various types of Abel's integral equations. This method is based on the modified Taylor wavelet (MTW) approximation. The purpose behind using the MTW approximation is to transform the introduction problems into an equivalent set of algebraic equations. To check the accuracy and applicability of the proposed method, some examples have been solved and compared with other existing methods.


2019 ◽  
Vol 64 (3) ◽  
pp. 1-10
Author(s):  
Matteo Filippi ◽  
Alfonso Pagani ◽  
Erasmo Carrera

This paper proposes a geometrically nonlinear three-dimensional formalism for the static and dynamic study of rotor blades. The structures are modeled using high-order beam finite elements whose kinematics are input parameters of the analysis. The displacement fields are written using two-dimensional Taylor- and Lagrange-like expansions of the cross-sectional coordinates. As far as the Taylor-like polynomials are concerned, the linear case is similar to the first-order shear deformation theory, whereas the higher-order expansions include additional contributions that describe the warping of the cross section. The Lagrange-type kinematics instead utilizes the displacements of certain physical points as degrees of freedom. The inherent three-dimensional nature of the Carrera unified formulation enables one to include all Green–Lagrange strain components as well as all coupling effects due to the geometrical features and the three-dimensional constitutive law. A number of test cases are considered to compare the current solutions with experimental and theoretical results reported in terms of large deflections/rotations and frequencies related to small amplitude vibrations.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
T. S. Amer

In this paper, we will focus on the dynamical behavior of a rigid body suspended on an elastic spring as a pendulum model with three degrees of freedom. It is assumed that the body moves in a rotating vertical plane uniformly with an arbitrary angular velocity. The relative periodic motions of this model are considered. The governing equations of motion are obtained using Lagrange’s equations and represent a nonlinear system of second-order differential equations that can be solved in terms of generalized coordinates. The numerical solutions are investigated using the fourth-order Runge-Kutta algorithms through Matlab packages. These solutions are represented graphically in order to describe and discuss the behavior of the body at any instant for different values of the physical parameters of the body. The obtained results have been discussed and compared with some previous published works. Some concluding remarks have been presented at the end of this work. The importance of this work is due to its numerous applications in life such as the vibrations that occur in buildings and structures.


Sign in / Sign up

Export Citation Format

Share Document