scholarly journals On Aerodynamic Models for Flutter Analysis: A Systematic Overview and Comparative Assessment

2021 ◽  
Vol 2 (3) ◽  
pp. 516-541
Author(s):  
Marco Berci

This work reviews different analytical formulations for the time-dependent aerodynamic load of a thin aerofoil and clarifies numerical flutter results available in the literature for the typical section of a flexible wing; inviscid, two-dimensional, incompressible, potential flow is considered in all test cases. The latter are investigated using the exact theory for small airflow perturbations, which involves both circulatory and non-circulatory effects of different nature, complemented by the p-k flutter analysis. Starting from unsteady aerodynamics and ending with steady aerodynamics, quasi-unsteady and quasi-steady aerodynamic models are systematically derived by successive simplifications within a unified approach. The influence of the aerodynamic approximations on the aeroelastic stability boundary is then rigorously assessed from both physical and mathematical perspectives. All aerodynamic models are critically discussed and compared in the light of the numerical results as well, within a comprehensive theoretical framework in practice. In all cases, results accuracy depends on the aero-structural arrangement of the flexible wing; however, simplified unsteady and simplified quasi-unsteady aerodynamic approximations are suggested for robust flutter analysis whenever the wing’s elastic axis lies ahead of the aerofoil’s control point.

2008 ◽  
Vol 33-37 ◽  
pp. 1101-1108
Author(s):  
Zhi Chun Yang ◽  
Wei Xia

An investigation on the stability of heated panels in supersonic airflow is performed. The nonlinear aeroelastic model for a two-dimensional panel is established using Galerkin method and the thermal effect on the panel stiffness is also considered. The quasi-steady piston theory is employed to calculate the aerodynamic load on the panel. The static and dynamic stabilities for flat panels are studied using Lyapunov indirect method and the stability boundary curve is obtained. The static deformation of a post-buckled panel is then calculated and the local stability of the post-buckling equilibrium is analyzed. The limit cycle oscillation of the post-buckled panel is simulated in time domain. The results show that a two-mode model is suitable for panel static stability analysis and static deformation calculation; but more than four modes are required for dynamic stability analysis. The effects of temperature elevation and dimensionless parameters related to panel length/thickness ratio, material density and Mach number on the stability of heated panel are studied. It is found that panel flutter may occur at relatively low aerodynamic pressure when several stable equilibria exist for the aeroelastic system of heated panel.


2018 ◽  
Vol 18 (06) ◽  
pp. 1871006 ◽  
Author(s):  
Yaobin Niu ◽  
Zhongwei Wang

In this paper, a new modified harmonic balance method is presented for the nonlinear aeroelastic analysis of two degree-of-freedom airfoils. Using this method, the nonlinear problem is first translated into a minimization problem, and the Particle Swarm Optimization which has high calculation efficiency is adopted to solve the problem. The proposed method is used to solve the nonlinear aeroelastic behavior of supersonic airfoil, with the unsteady aerodynamic load evaluated by the piston theory. Three examples of nonlinear aeroelasticity with significantly different coefficients are prepared, in which the frequencies and amplitudes of the limit cycles are obtained. The results show that the present current method is computationally more efficient.


2002 ◽  
Vol 205 (1) ◽  
pp. 55-70 ◽  
Author(s):  
Mao Sun ◽  
Jian Tang

SUMMARY A computational fluid-dynamic analysis was conducted to study the unsteady aerodynamics of a model fruit fly wing. The wing performs an idealized flapping motion that emulates the wing motion of a fruit fly in normal hovering flight. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow-structure information. Considerable lift can be produced when the majority of the wing rotation is conducted near the end of a stroke or wing rotation precedes stroke reversal (rotation advanced), and the mean lift coefficient can be more than twice the quasi-steady value. Three mechanisms are responsible for the large lift: the rapid acceleration of the wing at the beginning of a stroke, the absence of stall during the stroke and the fast pitching-up rotation of the wing near the end of the stroke. When half the wing rotation is conducted near the end of a stroke and half at the beginning of the next stroke (symmetrical rotation), the lift at the beginning and near the end of a stroke becomes smaller because the effects of the first and third mechanisms above are reduced. The mean lift coefficient is smaller than that of the rotation-advanced case, but is still 80 % larger than the quasi-steady value. When the majority of the rotation is delayed until the beginning of the next stroke (rotation delayed), the lift at the beginning and near the end of a stroke becomes very small or even negative because the effect of the first mechanism above is cancelled and the third mechanism does not apply in this case. The mean lift coefficient is much smaller than in the other two cases.


Author(s):  
Jeffrey P. Thomas ◽  
Earl H. Dowell ◽  
Kenneth C. Hall

Presented is a frequency domain harmonic balance (HB) technique for modeling nonlinear unsteady aerodynamics of three-dimensional transonic inviscid flows about wing configurations. The method can be used to model efficiently nonlinear unsteady aerodynamic forces due to finite amplitude motions of a prescribed unsteady oscillation frequency. When combined with a suitable structural model, aeroelastic (fluid-structure), analyses may be performed at a greatly reduced cost relative to time marching methods to determine the limit cycle oscillations (LCO) that may arise. As a demonstration of the method, nonlinear unsteady aerodynamic response and limit cycle oscillation trends are presented for the AGARD 445.6 wing configuration. Computational results based on the inviscid flow model indicate that the AGARD 445.6 wing configuration exhibits only mildly nonlinear unsteady aerodynamic effects for relatively large amplitude motions. Furthermore, and most likely a consequence of the observed mild nonlinear aerodynamic behavior, the aeroelastic limit cycle oscillation amplitude is predicted to increase rapidly for reduced velocities beyond the flutter boundary. This is consistent with results from other time-domain calculations. Although not a configuration that exhibits strong LCO characteristics, the AGARD 445.6 wing nonetheless serves as an excellent example for demonstrating the HB/LCO solution procedure.


2014 ◽  
Vol 908 ◽  
pp. 264-268
Author(s):  
Xiao Jun Xiang ◽  
Yu Qian

The unsteady aerodynamic loads are the basic of the aeroelastic. This paper focuses on the computation of the unsteady aerodynamic loads for forced periodic motions under different Mach numbers. The flow is modeled using the Euler equations and an unsteady time-domain solver is used for the computation of aerodynamic loads for forced periodic motions. The Euler equations are discretized on curvilinear multi-block body conforming girds using a cell-centred finite volume method. The implicit dual-time method proposed by Jameson is used for time-accurate calculations. Rigid body motions were treated by moving the mesh rigidly in response to the applied sinusoidal motion. For an aircraft model, a validation of the unsteady aerodynamics loads is first considered. Furthermore, a study for understanding the influence of different Mach number was conducted. A reverse of the trend of hysteretic loops can be observed with the increasing of the Mach number.


Author(s):  
J. Gordon Leishman

Many of the aerodynamic phenomena contributing to the observed effects on wind turbines are now known, but the details of the flow are still poorly understood and are challenging to predict accurately, issues discussed herein include the modeling of the induced velocity field produced by the vortical wake behind the turbine, the various unsteady aerodynamic issues associated with the blade sections, and the intricacies of dynamic stall. Fundamental limits exist in the capabilities of all models, and misunderstandings or ambiguities can also arise in how these models should be properly applied. A challenge for analysts is to use complementary experimental measurements and modeling techniques to better understand the aerodynamic problems found on wind turbines, and to develop more rigorous models with wider ranges of application.


Author(s):  
Vladimir V. Golubev

In this work, two different numerical methods of time-accurate nonlinear analysis are reviewed and compared in application to the problem of nonlinear unsteady aerodynamic and aeroacoustic airfoil responses to a high-intensity impinging gust. The incident perturbation field is of finite amplitude relative to the mean flow so that in general, no assumption of a linear superposition of responses from each individual harmonic can be made. Thus, in addition to providing a comparison of two different approaches in computational aeroacoustics, the paper achieves the objective of obtaining verified solutions determining the limits of validity for linearized methods, universally accepted in studies of unsteady aerodynamics and aeroacoustics. The work investigates nonlinear near- and far-field responses of a Joukowksi airfoil in the parametric space of gust intensity and frequency.


Author(s):  
S. Schreck ◽  
M. Robinson

To further reduce the cost of wind energy, future turbine designs will continue to migrate toward lighter and more flexible structures. Thus, the accuracy and reliability of aerodynamic load prediction has become a primary consideration in turbine design codes. Dynamically stalled flows routinely generated during yawed operation are powerful and potentially destructive, as well as complex and difficult to model. As a prerequisite to aerodynamics model improvements, wind turbine dynamic stall must be characterized in detail and thoroughly understood. In the current study, turbine blade surface pressure data and local inflow data acquired by the NREL Unsteady Aerodynamics Experiment during the NASA Ames wind tunnel experiment were analyzed. The dynamically stalled, vortex dominated flow field responded in systematic fashion to variations in wind speed, turbine yaw angle, and radial location, forming the basis for more thorough comprehension of wind turbine dynamic stall and improved modeling.


Sign in / Sign up

Export Citation Format

Share Document