scholarly journals Interactions and Binding Energies in Carbon Nanotube Bundles

Applied Nano ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 128-147
Author(s):  
Thomas Rybolt ◽  
Heir Jordan

On any size scale, it is important to know how strongly structural components are held together. The purpose of this work was to develop a means to estimate the collective binding energy holding together a bundle of aligned carbon nanotubes (CNTs). Carbon nanotubes in isolation and in bundles have unique and useful properties and applications within supramolecular structures and nanotechnology. Equations were derived to represent the total number of pairwise interactions between the CNTs found in various size and shape bundles. The shapes considered included diamond, hexagon, parallelogram, and rectangle. Parameters were used to characterize the size of a bundle for each defined shape. Force field molecular modeling was used to obtain the total bundle binding energies for a number of sample bundles. From the number of interactions per bundle, the binding energy per interaction was determined. This process was repeated for armchair CNTs having a range of length and circumference values. A simple equation described the interaction energy based on the length and circumference of the component armchair type nanotubes. When combined with the bundle shape and size parameters, the total bundle binding energy could be found. Comparison with whole bundle molecular mechanics calculations showed our formula-based approach to be effective.

2009 ◽  
Vol 6 (s1) ◽  
pp. S147-S152 ◽  
Author(s):  
Navaratnarajah Kuganathan

The structure and binding energies of antimony selenide crystals encapsulated within single-walled carbon nanotubes are studied using density functional theory. Calculations were performed on the simulated Sb2Se3structure encapsulated within single walled nanotube to investigate the perturbations on the Sb2Se3crystal and tube structure and electronic structure and to estimate the binding energy. The calculated structures are in good agreement with the experimental high resolution transmission electron microscopy images of the Sb2Se3@SWNT. The calculated binding energy shows that larger diameter tube could accommodate the Sb2Se3crystals exothermically. Minimal charge transfer is observed between nanotube and the Sb2Se3crystals.


2000 ◽  
Vol 15 (12) ◽  
pp. 2770-2779 ◽  
Author(s):  
Vincenzo Lordi ◽  
Nan Yao

Nanoscale composites have been a technological dream for many years. Recently, increased interest has arisen in using carbon nanotubes as a filler for polymer composites, owing to their very small diameters on the order of 1 nm, very high aspect ratios of 1000 or more, and exceptional strength with Young's modulus of approximately 1 TPa. A key issue for realizing these composites is obtaining good interfacial adhesion between the phases. In this work, we used force-field based molecular mechanics calculations to determine binding energies and sliding frictional stresses between pristine carbon nanotubes and a range of polymer substrates, in an effort to understand the factors governing interfacial adhesion. The particular polymers studied were chosen to correspond to reported composites in the literature. We also examined polymer morphologies by performing energy-minimizations in a vacuum. Hydrogen bond interactions with the ∏-bond network of pristine carbon nanotubes were found to bond most strongly to the surface, in the absence of chemically altered nanotubes. Surprisingly, we found that binding energies and frictional forces play only a minor role in determining the strength of the interface, but that helical polymer conformations are essential.


2003 ◽  
Vol 772 ◽  
Author(s):  
Masakazu Muroyama ◽  
Kazuto Kimura ◽  
Takao Yagi ◽  
Ichiro Saito

AbstractA carbon nanotube triode using Helicon Plasma-enhanced CVD with electroplated NiCo catalyst has been successfully fabricated. Isolated NiCo based metal catalyst was deposited at the bottom of the cathode wells by electroplating methods to control the density of carbon nanotubes and also reduce the activation energy of its growth. Helicon Plasma-enhanced CVD (HPECVD) has been used to deposit nanotubes at 400°C. Vertically aligned carbon nanotubes were then grown selectively on the electroplated Ni catalyst. Field emission measurements were performed with a triode structure. At a cathode to anode gap of 1.1mm, the turn on voltage for the gate was 170V.


2019 ◽  
Author(s):  
Mingguang Chen ◽  
Wangxiang Li ◽  
Anshuman Kumar ◽  
Guanghui Li ◽  
Mikhail Itkis ◽  
...  

<p>Interconnecting the surfaces of nanomaterials without compromising their outstanding mechanical, thermal, and electronic properties is critical in the design of advanced bulk structures that still preserve the novel properties of their nanoscale constituents. As such, bridging the p-conjugated carbon surfaces of single-walled carbon nanotubes (SWNTs) has special implications in next-generation electronics. This study presents a rational path towards improvement of the electrical transport in aligned semiconducting SWNT films by deposition of metal atoms. The formation of conducting Cr-mediated pathways between the parallel SWNTs increases the transverse (intertube) conductance, while having negligible effect on the parallel (intratube) transport. In contrast, doping with Li has a predominant effect on the intratube electrical transport of aligned SWNT films. Large-scale first-principles calculations of electrical transport on aligned SWNTs show good agreement with the experimental electrical measurements and provide insight into the changes that different metal atoms exert on the density of states near the Fermi level of the SWNTs and the formation of transport channels. </p>


2013 ◽  
Vol 3 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Teresa C.O. Marsi ◽  
Marcus A.F. Corat ◽  
Mirian M. Machado ◽  
Evaldo J. Corat ◽  
Fernanda R. Marciano ◽  
...  

2006 ◽  
Vol 84 (8) ◽  
pp. 1045-1049 ◽  
Author(s):  
Shabaan AK Elroby ◽  
Kyu Hwan Lee ◽  
Seung Joo Cho ◽  
Alan Hinchliffe

Although anisyl units are basically poor ligands for metal ions, the rigid placements of their oxygens during synthesis rather than during complexation are undoubtedly responsible for the enhanced binding and selectivity of the spherand. We used standard B3LYP/6-31G** (5d) density functional theory (DFT) to investigate the complexation between spherands containing five anisyl groups, with CH2–O–CH2 (2) and CH2–S–CH2 (3) units in an 18-membered macrocyclic ring, and the cationic guests (Li+, Na+, and K+). Our geometric structure results for spherands 1, 2, and 3 are in good agreement with the previously reported X-ray diffraction data. The absolute values of the binding energy of all the spherands are inversely proportional to the ionic radius of the guests. The results, taken as a whole, show that replacement of one anisyl group by CH2–O–CH2 (2) and CH2–S–CH2 (3) makes the cavity bigger and less preorganized. In addition, both the binding and specificity decrease for small ions. The spherands 2 and 3 appear beautifully preorganized to bind all guests, so it is not surprising that their binding energies are close to the parent spherand 1. Interestingly, there is a clear linear relation between the radius of the cavity and the binding energy (R2 = 0.999).Key words: spherands, preorganization, density functional theory, binding energy, cavity size.


Sign in / Sign up

Export Citation Format

Share Document