scholarly journals Air-Quality Challenges of Prescribed Fire in the Complex Terrain and Wildland Urban Interface Surrounding Bend, Oregon

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 515 ◽  
Author(s):  
Colton Miller ◽  
Susan O’Neill ◽  
Miriam Rorig ◽  
Ernesto Alvarado

Prescribed fires in forest ecosystems can negatively impact human health and safety by transporting smoke downwind into nearby communities. Smoke transport to communities is known to occur around Bend, Oregon, United States of America (USA), where burning at the wildland–urban interface in the Deschutes National Forest resulted in smoke intrusions into populated areas. The number of suitable days for prescribed fires is limited due to the necessity for moderate weather conditions, as well as wind directions that do not carry smoke into Bend. To better understand the conditions leading to these intrusions and to assess predictions of smoke dispersion from prescribed fires, we collected data from an array of weather and particulate monitors over the autumn of 2014 and spring of 2015 and historical weather data from nearby remote automated weather stations (RAWS). We characterized the observed winds to compare with meteorological and smoke dispersion models using the BlueSky smoke modeling framework. The results from this study indicated that 1–6 days per month in the spring and 2–4 days per month in the fall met the general meteorological prescription parameters for conducting prescribed fires in the National Forest. Of those, 13% of days in the spring and 5% of days in the fall had “ideal” wind patterns, when north winds occurred during the day and south winds did not occur at night. The analysis of smoke intrusions demonstrated that dispersion modeling can be useful for anticipating the timing and location of smoke impacts, but substantial errors in wind speed and direction of the meteorological models can lead to mischaracterizations of intrusion events. Additionally, for the intrusion event modeled using a higher-resolution 1-km meteorological and dispersion model, we found improved predictions of both the timing and location of smoke delivery to Bend compared with the 4-km meteorological model. The 1-km-resolution model prediction fell within 1 h of the observed event, although with underpredicted concentrations, and demonstrated promise for high-resolution modeling in areas of complex terrain.

2015 ◽  
Vol 54 (6) ◽  
pp. 1162-1176 ◽  
Author(s):  
Fong Ngan ◽  
Ariel Stein ◽  
Roland Draxler

AbstractThe Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), a Lagrangian dispersion model, has been coupled (inline) to the the Weather Research and Forecasting (WRF) Model meteorological model in such a way that the HYSPLIT calculation is run as part of the WRF-ARW prediction calculation. This inline version of HYSPLIT takes advantage of the higher temporal frequency of WRF-ARW variables relative to what would be available for the offline approach. Furthermore, the dispersion calculation uses the same vertical coordinate system as WRF-ARW, resulting in a more consistent depiction of the state of the atmosphere and the dispersion simulation. Both inline and the offline HYSPLIT simulations were conducted for two tracer experiments at quite different model spatial resolutions: the Cross Appalachian Tracer Experiment (CAPTEX) in regional scale (at 9-km grid spacing) and the Atmospheric Studies in Complex Terrain (ASCOT) in finescale (at 333.3-m grid spacing). A comparison of the model with the measured values showed that the results of the two approaches were very similar for all six releases in CAPTEX. For the ASCOT experiments, the cumulative statistical score of the inline simulations was better than or equal to offline runs in four of five releases. Although the use of the inline approach did not provide any advantage over the offline method for the regional spatial scale and medium-range temporal scale represented by the CAPTEX experiment, the inline HYSPLIT was able to improve the simulation of the dispersion when compared with the offline version for the fine spatial and temporal resolutions over the complex-terrain area represented by ASCOT. The improvement of the inline over the offline calculation is attributed to the elimination of temporal and vertical interpolation of the meteorological data as compared with the offline version.


2019 ◽  
Vol 58 (3) ◽  
pp. 551-568 ◽  
Author(s):  
Michael T. Kiefer ◽  
Joseph J. Charney ◽  
Shiyuan Zhong ◽  
Warren E. Heilman ◽  
Xindi Bian ◽  
...  

AbstractIn this study, the Flexible Particle (FLEXPART)-WRF, a Lagrangian particle dispersion model, is employed to simulate pollutant dispersion in and near the Lehigh Gap, a gap in a prominent ridgeline in eastern Pennsylvania. FLEXPART-WRF is used to evaluate the diagnostic value of the ventilation index (VI), an index that describes the potential for smoke or other pollutants to ventilate away from a source, for indicating dispersion potential in complex terrain. Little is known about the effectiveness of the ventilation index in diagnosing dispersion potential in complex terrain. The modeling approach used in this study is to release a dense cloud of particles across a portion of the model domain and evaluate particle behavior and VI diagnostic value in areas of the domain with differing terrain characteristics. Although both horizontal and vertical dispersion are examined, the study focuses primarily on horizontal dispersion, assessed quantitatively by calculating horizontal residence time (HRT) within a 1-km-radius circle surrounding the particle release point. Analysis of HRT across the domain reveals horizontal dispersion patterns that are influenced by the ridgeline and the Lehigh Gap. Comparison of VI and HRT in different areas of the domain reveals a robust relationship windward of the ridgeline and a weak relationship leeward of the ridgeline and in the vicinity of the Lehigh Gap. The results of this study suggest that VI users should consider whether they are windward or leeward of topographic features, and highlight the need for an alternative metric that better takes into account the influence of the terrain on dispersion.


2019 ◽  
Vol 58 (3) ◽  
pp. 511-525
Author(s):  
David Werth ◽  
Grace Maze ◽  
Robert Buckley ◽  
Steven Chiswell

AbstractAirborne tracer simulations are typically performed using a dispersion model driven by a high-resolution meteorological model. Besides solving the dynamic equations of momentum, heat, and moisture on the resolved model grid, mesoscale models must account for subgrid-scale fluxes and other unresolved processes. These are estimated through parameterization schemes of eddy diffusion, convection, and surface interactions, and they make use of prescribed parameters set by the user. Such “free” model parameters are often poorly constrained, and a range of plausible values exists for each. Evolutionary programming (EP) is a process to improve the selection of the parameters. A population of simulations is first run with a different set of parameter values for each member, and the member judged most accurate is selected as the “parent” of a new “generation.” After a number of iterations, the simulations should approach a configuration that is best adapted to the atmospheric conditions. We apply the EP process to simulate the first release of the 1994 European Tracer Experiment (ETEX) project, which comprised two experiments in which a tracer was released in western France and sampled by an observing network. The EP process is used to improve a simulation of the RAMS mesoscale weather model, with weather data collected during ETEX being used to “score” the individual members according to how well each simulation matches the observations. The meteorological simulations from before and after application of the EP process are each used to force a dispersion model to create a simulation of the ETEX release, and substantial improvement is observed when these are validated against sampled tracer concentrations.


2011 ◽  
Vol 11 (9) ◽  
pp. 4333-4351 ◽  
Author(s):  
A. Stohl ◽  
A. J. Prata ◽  
S. Eckhardt ◽  
L. Clarisse ◽  
A. Durant ◽  
...  

Abstract. The April–May, 2010 volcanic eruptions of Eyjafjallajökull, Iceland caused significant economic and social disruption in Europe whilst state of the art measurements and ash dispersion forecasts were heavily criticized by the aviation industry. Here we demonstrate for the first time that large improvements can be made in quantitative predictions of the fate of volcanic ash emissions, by using an inversion scheme that couples a priori source information and the output of a Lagrangian dispersion model with satellite data to estimate the volcanic ash source strength as a function of altitude and time. From the inversion, we obtain a total fine ash emission of the eruption of 8.3 ± 4.2 Tg for particles in the size range of 2.8–28 μm diameter. We evaluate the results of our model results with a posteriori ash emissions using independent ground-based, airborne and space-borne measurements both in case studies and statistically. Subsequently, we estimate the area over Europe affected by volcanic ash above certain concentration thresholds relevant for the aviation industry. We find that during three episodes in April and May, volcanic ash concentrations at some altitude in the atmosphere exceeded the limits for the "Normal" flying zone in up to 14 % (6–16 %), 2 % (1–3 %) and 7 % (4–11 %), respectively, of the European area. For a limit of 2 mg m−3 only two episodes with fractions of 1.5 % (0.2–2.8 %) and 0.9 % (0.1–1.6 %) occurred, while the current "No-Fly" zone criterion of 4 mg m−3 was rarely exceeded. Our results have important ramifications for determining air space closures and for real-time quantitative estimations of ash concentrations. Furthermore, the general nature of our method yields better constraints on the distribution and fate of volcanic ash in the Earth system.


2016 ◽  
Vol 821 ◽  
pp. 85-90 ◽  
Author(s):  
Petr Michálek ◽  
David Zacho

Experimental study of gas dispersion over complex terrain model was performed in VZLU Prague. A complex terrain model was mounted into a boundary layer wind tunnel and equipped with ground-level gas emission source. Concentration field of the emitted gas was measured using comb suction probe and flame ionization detectors. The results will serve for verification and validation of a new computational dispersion model.


1997 ◽  
Vol 15 (4) ◽  
pp. 476-486 ◽  
Author(s):  
J. Camps ◽  
J. Massons ◽  
M. R. Soler ◽  
E. C. Nickerson

Abstract. A three-dimensional meteorological model and a Lagrangian particle dispersion model are used to study the effects of a uniform large-scale wind on the dispersion of a non-reactive pollutant in a coastal region with complex terrain. Simulations are carried out both with and without a background wind. A comparison between model results and measured data (wind and pollutant concentrations) indicates that the coupled model system provides a useful mechanism for analyzing pollutant dispersion in coastal regions.


Sign in / Sign up

Export Citation Format

Share Document