scholarly journals Bulk Scaling Model of Entrainment Zone Thickness in a Convective Boundary Layer, with a Shear Effect Promoted by Velocity Difference

Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Anran Li ◽  
Wenfeng Gao ◽  
Tao Liu

Studying the thickness of the convective boundary layer (CBL) is helpful for understanding atmospheric structure and the diffusion of air pollutants. When there is velocity shear in CBL, the flow field structure is very different from that of shear-free CBL, which makes the thickness model of the entrainment zone deviate. A large-eddy simulation (LES) approach is carried out for a horizontally homogeneous, atmospheric CBL, with a shear effect promoted by velocity difference to explore the bulk scaling model of the entrainment zone thickness. The post-processed data indicate that the existing bulk scaling models cannot synthetically represent the effects of shear and buoyancy on entrainment, resulting in reduced accuracy or limited applicability. Based on the fraction of turbulent kinetic energy (TKE) used for entrainment, a different form of the characteristic velocity scale, which includes the shear effect, is proposed, and a modified bulk scaling model that uses a potential temperature gradient to replace the potential temperature jump across the entrainment zone is constructed with the numerical results. The new model is found to provide an improved prediction of the entrainment zone thickness in a sheared CBL.

2005 ◽  
Vol 62 (6) ◽  
pp. 1932-1946 ◽  
Author(s):  
Si-Wan Kim ◽  
Chin-Hoh Moeng ◽  
Jeffrey C. Weil ◽  
Mary C. Barth

Abstract A Lagrangian particle dispersion model (LPDM) is used to study fumigation of pollutants in and above the entrainment zone into a growing convective boundary layer. Probability density functions of particle location with height and time are calculated from particle trajectories driven by the sum of the resolved-scale velocity from a large-eddy simulation (LES) model and the stochastic subgrid-scale (SGS) velocity. The crosswind-integrated concentration (CWIC) fields show good agreement with water tank experimental data. A comparison of the LPDM output with an Eulerian diffusion model output based on the same LES flow shows qualitative agreement with each other except that a greater overshoot maximum of the ground-level concentration occurs in the Eulerian model. The dimensionless CWICs near the surface for sources located above the entrainment zone collapse to a nearly universal curve provided that the profiles are time shifted, where the shift depends on the source heights. The dimensionless CWICs for sources located within the entrainment zone show a different behavior. Thus, fumigation from sources above the entrainment zone and within the entrainment zone should be treated separately. An examination of the application of Taylor’s translation hypothesis to the fumigation process showed the importance of using the mean boundary layer wind speed as a function of time rather than the initial mean boundary layer wind speed, because the mean boundary layer wind speed decreases as the simulation proceeds. The LPDM using LES is capable of accurately simulating fumigation of particles into the convective boundary layer. This technique provides more computationally efficient simulations than Eulerian models.


2011 ◽  
Vol 50 (2) ◽  
pp. 472-481 ◽  
Author(s):  
Sylvain Cheinet ◽  
Pierre Cumin

Abstract Many wave propagation applications depend on the local, instantaneous structure parameters of humidity and of potential temperature . This study uses a large-eddy simulation to explore and compare the variability of and in the shearless, entrainment-drying convective boundary layer (CBL). The predicted horizontal mean profiles of these quantities are shown to agree with corresponding observations. The results in the bulk CBL suggest that the largest occur in the entrained tropospheric air whereas the largest are within the convective plumes. There are distinct correlations between the vertical velocity and and between the vertical velocity and . It is shown that these correlations can significantly contribute to the mean vertical velocity biases measured from radars and sodars. A physical interpretation for these contributions is offered in terms of the CBL dynamics.


2018 ◽  
Vol 75 (7) ◽  
pp. 2317-2336 ◽  
Author(s):  
Bowen Zhou ◽  
Shiwei Sun ◽  
Kai Yao ◽  
Kefeng Zhu

Abstract Turbulent mixing in the daytime convective boundary layer (CBL) is carried out by organized nonlocal updrafts and smaller local eddies. In the upper mixed layer of the CBL, heat fluxes associated with nonlocal updrafts are directed up the local potential temperature gradient. To reproduce such countergradient behavior in parameterizations, a class of planetary boundary layer schemes adopts a countergradient correction term in addition to the classic downgradient eddy-diffusion term. Such schemes are popular because of their simple formulation and effective performance. This study reexamines those schemes to investigate the physical representations of the gradient and countergradient (GCG) terms, and to rebut the often-implied association of the GCG terms with heat fluxes due to local and nonlocal (LNL) eddies. To do so, large-eddy simulations (LESs) of six idealized CBL cases are performed. The GCG fluxes are computed a priori with horizontally averaged LES data, while the LNL fluxes are diagnosed through conditional sampling and Fourier decomposition of the LES flow field. It is found that in the upper mixed layer, the gradient term predicts downward fluxes in the presence of positive mean potential temperature gradient but is compensated by the upward countergradient correction flux, which is larger than the total heat flux. However, neither downward local fluxes nor larger-than-total nonlocal fluxes are diagnosed from LES. The difference reflects reduced turbulence efficiency for GCG fluxes and, in terms of physics, conceptual deficiencies in the GCG representation of CBL heat fluxes.


2020 ◽  
Vol 77 (2) ◽  
pp. 435-442
Author(s):  
John Thuburn ◽  
Georgios A. Efstathiou

Abstract We hypothesize that the convective atmospheric boundary layer is marginally stable when the damping effects of turbulence are taken into account. If the effects of turbulence are modeled as an eddy viscosity and diffusivity, then an idealized analysis based on the hypothesis predicts a well-known scaling for the magnitude of the eddy viscosity and diffusivity. It also predicts that the marginally stable modes should have vertical and horizontal scales comparable to the boundary layer depth. A more quantitative numerical linear stability analysis is presented for a realistic convective boundary layer potential temperature profile and is found to support the hypothesis.


2020 ◽  
Vol 244 ◽  
pp. 105035 ◽  
Author(s):  
S.V. Anisimov ◽  
S.V. Galichenko ◽  
A.A. Prokhorchuk ◽  
K.V. Aphinogenov

Sign in / Sign up

Export Citation Format

Share Document