scholarly journals Achieving Carbon Neutrality for A Future Large Greenhouse Gas Emitter in Quebec, Canada: A Case Study

Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 810
Author(s):  
Patrick Faubert ◽  
Sylvie Bouchard ◽  
Rémi Morin Chassé ◽  
Hélène Côté ◽  
Pierre-Luc Dessureault ◽  
...  

To reach the Paris Agreement targets of holding the global temperature increase below 2 °C above the preindustrial levels, every human activity will need to be carbon neutral by 2050. Feasible means for industries to achieve carbon neutrality must be developed and assessed economically. Herein we present a case study on available solutions to achieve net-zero carbon from the get-go for a planned liquefied natural gas (LNG) plant in Quebec, which would classify as a large Canadian greenhouse gas (GHG) emitter. From a literature review, available options were prioritized with the promoter. Each prioritized potential solution is discussed in light of its feasibility and the associated economic opportunities and challenges. Although net-zero carbon is feasible from the get-go, results show that the promoter should identify opportunities to reduce as much as possible emissions at source, cooperate with other industries for CO2 capture and utilization, replace natural gas from fossil sources by renewable sources and offset the remaining emissions by planting trees and/or buying offsets on the compliance and voluntary markets. As some of these solutions are still to be developed, to ensure timely net-zero pledge for the lifespan of the LNG plant, a portfolio and progressive approach to combine offsets and other options is preferable.

2020 ◽  
Vol 32 (6) ◽  
pp. 837-847
Author(s):  
Martin Jurkovič ◽  
Tomáš Kalina ◽  
Tomáš Skrúcaný ◽  
Piotr Gorzelanczyk ◽  
Vladimír Ľupták

The aim of the paper is to assess the possibility of decreasing the chosen environmental indicators like energy consumption, greenhouse gas (GHG) production and other exhaust pollutants in the selected region in Slovakia by introducing Liquefied Natural Gas (LNG) buses into bus transport. The assessment is carried out by comparing the consumption and emissions of current buses (EURO 2) in real operation, with potential buses (EURO 6) and with pilot LNG buses testing on the same lines. Comparison took place under the same conditions over the same period. The study measures the energy consumption and GHG production per bus. The research paper also compares two methodologies of calculation. The first calculation is according to the European Standard EN 16258: 2012 which specifies the general methodology for evaluation and declaration of energy consumption and GHG emissions (all services - cargo, passengers or both). The second calculation is according to the Handbook of Emission Factors for Road Transport (HBEFA). The results of the calculation are compared  by both methods, and the most suitable version of the bus in terms of GHG emissions is proposed.


2021 ◽  
Vol 28 (1) ◽  
pp. 52
Author(s):  
Omar Belhamiti ◽  
Maghnia Hamou Maamar ◽  
Amina Mezouagh ◽  
Belkacem Absar

2021 ◽  
Vol 28 (1) ◽  
pp. 52
Author(s):  
Amina Mezouagh ◽  
Belkacem Absar ◽  
Maghnia Hamou Maamar ◽  
Omar Belhamiti

2021 ◽  
Author(s):  
Jacob Waslander ◽  
Julie Bos ◽  
Yili Wu

This paper focuses on answering the following question: how can a private sector bank—one that has already committed to shifting its business model towards net-zero emissions—change its client engagement strategy and update its offerings? This paper analyzes action already taken by banks and identifies additional steps private sector banks should take to align their business model with the Paris Agreement (greenhouse gas mitigation objective) and cater to their clients’ needs in a manner that fosters a net-zero transition.


2021 ◽  
Author(s):  
Joeri Rogelj ◽  
Andy Reisinger ◽  
Annette Cowie ◽  
Oliver Geden

<p>With the adoption of the Paris Agreement in 2015 the world has decided that warming should be kept well below 2°C while pursuing a limit of 1.5°C above preindustrial levels. The Paris Agreement also sets a net emissions reduction goal: in the second half of the century, the balance of global anthropogenic greenhouse gas emissions and removals should become net zero. Since 2018, in response to the publication of the IPCC Special Report on Global Warming of 1.5°C, a flurry of net zero target announcements has ensued. Many countries, cities, regions, companies, or other organisations have come forward with targets to reach net zero, or become carbon or climate neutral. These labels describe a wide variety of targets, and rarely detailed. Lack of transparency renders it impossible to understand their ultimate contribution towards the global goal. Here we present a set of key criteria that high-quality net zero targets should address. These nine criteria cover emissions, removals, timing, fairness and a long-term vision. Unless net zero targets provide clarity on these nine criteria, we may not know until it is too late whether the collective promise of net zero targets is adequate to meet the global goal of the Paris Agreement.</p>


Author(s):  
Amir Sharafian ◽  
Paul Blomerus ◽  
Walter Mérida

Abstract Recent research into methane emissions from the liquefied natural gas (LNG) supply chain has revealed uncertainty in the overall greenhouse gas emissions reduction associated with the use of LNG in heavy-duty vehicles. Methane is the main component of natural gas and a potent greenhouse gas. This study investigates the impact of five methods used to offload LNG from a tanker truck to an LNG refueling station and estimate the amount of fugitive methane emissions. The LNG offloading process time, and the final pressures of the tanker truck and refueling station are considered to evaluate the performance of the LNG offloading methods. The modeling results show that the LNG transfer by using a pressure buildup unit has a limited operating range and can increase methane emissions by 10.4% of LNG offloaded from the tanker truck. The results indicate that the LNG transfer by using a pump and an auxiliary pressure buildup unit without vapor return provides the shortest fuel offloading time with the lowest risk of venting methane to the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document