scholarly journals Rainfall Trends and Extremes in Saudi Arabia in Recent Decades

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 964 ◽  
Author(s):  
Mansour Almazroui

The observed records of recent decades show increased economic damage associated with flash flooding in different regions of Saudi Arabia. An increase in extreme rainfall events may cause severe repercussions for the socio-economic sectors of the country. The present study investigated the observed rainfall trends and associated extremes over Saudi Arabia for the 42-year period of 1978–2019. It measured the contribution of extreme events to the total rainfall and calculated the changes to mean and extreme rainfall events over five different climate regions of Saudi Arabia. Rainfall indices were constructed by estimating the extreme characteristics associated with daily rainfall frequency and intensity. The analysis reveals that the annual rainfall is decreasing (5.89 mm decade−1, significant at the 90% level) over Saudi Arabia for the entire analysis period, while it increased in the most recent decade. On a monthly scale, the most significant increase (5.44 mm decade−1) is observed in November and the largest decrease (1.20 mm decade−1) in January. The frequency of intense rainfall events is increasing for the majority of stations over Saudi Arabia, while the frequency of weak events is decreasing. More extreme rainfall events are occurring in the northwest, east, and southwest regions of Saudi Arabia. A daily rainfall of ≥ 26 mm is identified as the threshold for an extreme event. It is found that the contribution of extreme events to the total rainfall amount varies from region to region and season to season. The most considerable contribution (up to 56%) is found in the southern region in June. Regionally, significant contribution comes from the coastal region, where extreme events contribute, on average, 47% of the total rainfall each month from October to February, with the largest (53%) in November. For the entire country, extreme rainfall contributes most (52%) in November and least (20%) in July, while contributions from different stations are in the 8–50% range of the total rainfall.

2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


Author(s):  
Carlo Montes ◽  
Nachiketa Acharya ◽  
Quamrul Hassan

This work focuses on the analysis of the performance of satellite-based precipitation products for monitoring extreme rainfall events. Five precipitation products are inter-compared and evaluated in capturing indices of extreme rainfall events during 1998-2019 considering four indices of extreme rainfall. Satellite products show a variable performance, which in general indicates that the occurrence and amount of rainfall of extreme events can be both underestimated or overestimated by the datasets in a systematic way throughout the country. Also, products that consider the use of ground truth data have the best performance.


Author(s):  
E. Schiavo Bernardi ◽  
D. Allasia ◽  
R. Basso ◽  
P. Freitas Ferreira ◽  
R. Tassi

Abstract. The lack of rainfall data in Brazil, and, in particular, in Rio Grande do Sul State (RS), hinders the understanding of the spatial and temporal distribution of rainfall, especially in the case of the more complex extreme events. In this context, rainfall's estimation from remote sensors is seen as alternative to the scarcity of rainfall gauges. However, as they are indirect measures, such estimates needs validation. This paper aims to verify the applicability of the Tropical Rainfall Measuring Mission (TRMM) satellite information for extreme rainfall determination in RS. The analysis was accomplished at different temporal scales that ranged from 5 min to daily rainfall while spatial distribution of rainfall was investigated by means of regionalization. An initial test verified TRMM rainfall estimative against measured rainfall at gauges for 1998–2013 period considering different durations and return periods (RP). Results indicated that, for the RP of 2, 5, 10 and 15 years, TRMM overestimated on average 24.7% daily rainfall. As TRMM minimum time-steps is 3 h, in order to verify shorter duration rainfall, the TRMM data were adapted to fit Bell's (1969) generalized IDF formula (based on the existence of similarity between the mechanisms of extreme rainfall events as they are associated to convective cells). Bell`s equation error against measured precipitation was around 5–10%, which varied based on location, RP and duration while the coupled BELL+TRMM error was around 10–35%. However, errors were regionally distributed, allowing a correction to be implemented that reduced by half these values. These findings in turn permitted the use of TRMM+Bell estimates to improve the understanding of spatiotemporal distribution of extreme hydrological rainfall events.


2021 ◽  
Author(s):  
Moses.A Ojara ◽  
Yunsheng Lou ◽  
Hasssen Babaousmail ◽  
Peter Wasswa

Abstract East African countries (Uganda, Kenya, Tanzania, Rwanda, and Burundi) are prone to weather extreme events. In this regard; the past occurrence of extreme rainfall events is analyzed for 25 stations following the Expert Team on Climate Change Detection and Indices (ETCCDI) regression method. Detrended Fluctuation Analysis (DFA) is used to show the future development of extreme events. Pearson’s correlation analysis is performed to show the relationship of extreme events between different rainfall zones and their association with El Niño -Southern Oscillation (ENSO and Indian Ocean dipole (IOD) IOD-DMI indices. Results revealed that the consecutive wet day's index (CWD) was decreasing trend in 72% of the stations analyzed, moreover consecutive dry days (CDD) index also indicated a positive trend in 44% of the stations analyzed. Heavy rainfall days index (R10mm) showed a positive trend at 52% of the stations and was statistically significant at a few stations. In light of the extremely heavy rainfall days (R25mm) index, 56% of the stations revealed a decreasing trend for the index and statistically significant trend at some stations. Further, a low correlation coefficient of extreme rainfall events in the regions; and between rainfall extreme indices with the atmospheric teleconnection indices (Dipole Mode Index-DMI and Nino 3.4) (r = -0.1 to r = 0.35). Most rainfall zones showed a positive correlation between the R95p index and DMI, while 5/8 of the rainfall zones experienced a negative correlation between Nino 3.4 index and the R95p. In light of the highly variable trends of extremes events, we recommend planning adaptation and mitigation measures that consider the occurrence of such high variability. Measures such as rainwater harvesting, stored and used during needs, planned settlement, and improved drainage systems management supported by accurate climate and weather forecasts is highly advised.


2020 ◽  
Vol 29 (8) ◽  
pp. 702 ◽  
Author(s):  
Elise M. Verhoeven ◽  
Brad R. Murray ◽  
Chris R. Dickman ◽  
Glenda M. Wardle ◽  
Aaron C. Greenville

Assessing wildfire regimes and their environmental drivers is critical for effective land management and conservation. We used Landsat imagery to describe the wildfire regime of the north-eastern Simpson Desert (Australia) between 1972 and 2014, and to quantify the relationship between wildfire extent and rainfall. Wildfires occurred in 15 of the 42 years, but only 27% of the study region experienced multiple wildfires. A wildfire in 1975 burned 43% of the region and is the largest on record for the area. More recently, a large wildfire in 2011 reburned areas that had not burned since 1975 (47% of the 2011 wildfire), as well as new areas that had no record of wildfires (25% of the 2011 wildfire). The mean minimum wildfire return interval was 27 years, comparable with other spinifex-dominated grasslands, and the mean time since last wildfire was 21 years. Spinifex-dominated vegetation burned most frequently and over the largest area. Extreme annual rainfall events (> 93rd percentile) effectively predicted large wildfires occurring 2 years after those events. Extreme rainfall is predicted to increase in magnitude and frequency across central Australia, which could alter wildfire regimes and have unpredictable and far-reaching effects on ecosystems in the region’s arid landscapes.


2021 ◽  
Author(s):  
Christoph Sauter ◽  
Christopher White ◽  
Hayley Fowler ◽  
Seth Westra

<p>Heatwaves and extreme rainfall events are natural hazards that can have severe impacts on society. The relationship between temperature and extreme rainfall has received scientific attention with studies focussing on how single daily or sub-daily rainfall extremes are related to day-to-day temperature variability. However, the impact multi-day heatwaves have on sub-daily extreme rainfall events and how extreme rainfall properties change during different stages of a heatwave remains mostly unexplored.</p><p>In this study, we analyse sub-daily rainfall records across Australia, a country that experiences severe natural hazards on a frequent basis, and determine their extreme rainfall properties, such as rainfall intensity, duration and frequency during SH-summer heatwaves. These properties are then compared to extreme rainfall properties found outside heatwaves, but during the same time of year, to examine to what extent they differ from normal conditions. We also conduct a spatial analysis to investigate any spatial patterns that arise.</p><p>We find that rainfall breaking heatwaves is often more extreme than average rainfall during the same time of year. This is especially prominent on the eastern and south-eastern Australian coast, where frequency and intensity of sub-daily rainfall extremes show an increase during the last day or the day immediately after a heatwave. We also find that although during heatwaves the average rainfall amount and duration decreases, there is an increase in sub-daily rainfall intensity when compared to conditions outside heatwaves. This implies that even though Australian heatwaves are generally characterised by dry conditions, rainfall occurrences within heatwaves are more intense.</p><p>Both heatwaves and extreme rainfall events pose great challenges for many sectors such as agriculture, and especially if they occur together. Understanding how and to what degree these events co-occur could help mitigate the impacts caused by them.</p>


Author(s):  
Douglas Schaefer

Variations in temperature and precipitation are both components of climate variability. Based on coral growth rates measured near Puerto Rico, the Caribbean was 2–3ºC cooler during the “Little Ice Age” during the seventeenth century (Winter et al. 2000). At the millennial scale, temperature variations in tropical regions have been inferred to have substantial biological effects (such as speciation and extinction), but not at the multidecadal timescales considered here. My focus is on precipitation variability in particular, because climate models examining effects of increased greenhouse gases suggest greater changes in precipitation than in temperature patterns in tropical regions. Some correspondence between both the El Niño–Southern Oscillation (ENSO) and the Northern Atlantic Oscillation (NAO) and average temperatures and total annual precipitation have been reported for the LTER site at Luquillo (Greenland 1999; Greenland and Kittel 2002), but those studies did not refer to extreme events. Based on climate records for Puerto Rico since 1914, Malmgren et al. (1997) found small increases in air temperature during El Niño years and somewhat greater total rainfall during the positive phase of the NAO. Similar to ENSO, the NAO index is characterized by differences in sea-level atmospheric pressure, in this case based on measurements in Iceland and Portugal (Walker and Bliss 1932). Its effects on climate have largely been described in terms of temperature and precipitation anomalies in countries bordering the North Atlantic (e.g., Hurrell 1995). Puerto Rico is in the North Atlantic hurricane zone, and hurricanes clearly play a major role in precipitation variability. The association between extreme rainfall events and hurricanes is discussed in detail in this chapter. I examine the degree to which extreme rainfall events are associated with hurricanes and other tropical storms. I discuss whether the occurrence of these extreme events has changed through time in Puerto Rico or can be linked to the recurrent patterns of the ENSO or the NAO. I examine the 25-year daily precipitation record for the Luquillo LTER site, the 90-year monthly record from the nearest site to Luquillo with such a long record, Fajardo, and those of the two other Puerto Rico stations with the longest daily precipitation records, Manati and Mayaguez (figure 8.1).


2020 ◽  
Vol 80 (3) ◽  
pp. 175-188
Author(s):  
R Rajkumar ◽  
CS Shaijumon ◽  
B Gopakumar ◽  
D Gopalakrishnan

In the present study, we examined the exposure of the Tamil Nadu region, India, to droughts and extreme rainfall events using the Standardised Precipitation Evapotranspiration Index (SPEI) and a classification scheme based on daily rainfall. We used high-resolution temperature and rainfall observations from the India Meteorological Department for the period 1951-2016. The robustness of the results was tested using the Mann-Kendall trend (M-K) test and the Kolmogorov-Smirnov (K-S) test. During the study period, there were statistically significant increasing trends in drought area (90% significance level), maximum drought intensity (99% significance level) and maximum drought severity (99% significance level) over the Tamil Nadu region. There has also been an increase in the frequency and intensity of heavy rainfall events in recent years. The spatio-temporal dimensions of this study suggest an increasing exposure of this semi-arid, rain shadow region to severe droughts and extreme rainfall events in recent decades. The results provide sufficient grounds to substantiate the necessity of immediate interventions at the policy level.


2014 ◽  
Vol 11 (21) ◽  
pp. 6119-6129 ◽  
Author(s):  
B.-J. Jung ◽  
J.-K. Lee ◽  
H. Kim ◽  
J.-H. Park

Abstract. Despite an increasing recognition of the importance of extreme rainfall events for organic carbon export to inland waters, little attention has been paid to the export and reactivity of particulate organic carbon (POC) and dissolved organic C (DOC) in mountainous headwater watersheds under monsoon climates. To investigate environmental implications of storm-enhanced export of POC and DOC in mountainous headwater streams, we examined the relationships between storm magnitude and C export from a forested watershed in the Haean Basin, South Korea, during 13 storm events over 4 years and compared potentials of DOC and POC for biodegradation and disinfection byproduct (DBP) formation during an extreme rainfall event with a total rainfall of 209 mm. Event mean concentrations and export of POC increased nonlinearly above thresholds of precipitation and discharge, far exceeding the relatively small increases of DOC. The export of POC during a few storm events with a total rainfall above 200 mm per event exceeded the annual organic C export during dry years. During the 209 mm storm event, concentrations of total trihalomethanes formed by POC-derived dissolved components changed synchronously with POC concentrations, exhibiting lower levels than those formed by DOC. During a 30-day incubation at 25 °C, DOC exported during peak flow exhibited rapid biodegradation of labile components within 7 days. In contrast, the concentrations of DOC leached from POC gradually increased following the initial decline. Gradual transformation of POC-derived dissolved materials resulted in greater increases in the intensity of fulvic- and humic-like fluorescent components compared to the DOC treatment. The results highlight the significance of extreme rainfall events as "hot moments" for POC export from mountainous watersheds and also suggest that storm pulses of POC can provide potential sources of reactive organic components that can rapidly biodegrade and form DBPs after being released into headwater streams.


Sign in / Sign up

Export Citation Format

Share Document