scholarly journals Temporal Distribution and Gas/Particle Partitioning of Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere of Strasbourg, France

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 337
Author(s):  
Supansa Chimjarn ◽  
Olivier Delhomme ◽  
Maurice Millet

Gas and particulate phase ambient air concentrations of polycyclic aromatic hydrocarbons (Ʃ16PAHs) were determined in Strasbourg, a large city located in the Alsace region of northeastern France, from May 2018 to March 2020, to study the evolution of their temporal variations and their potential origins. The analysis of PAHs was performed using a global analytical method permitting the quantification of pesticides, PAHs, and polychlorobiphenyls (PCBs). Filters and Carbon doped silicon carbide NMC@SiC foams were extracted by accelerated solvent extraction (ASE) followed by a solid-phase extraction (SPE). Afterwards, extracts were analyzed using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). Prior to analysis, a pre-concentration step based on solid-phase microextraction (SPME) was used with a polydimethylsiloxane (PDMS) 100 µm fiber. The average total (gas plus particulate) concentration of Ʃ16PAHs varied from 0.51 to 117.31 ng m−3 with a mean of 16.87 ng m−3, with higher concentrations in the cold season of more than 2.5-fold and 6-fold that in the warm season for the gas and particulate phases, respectively. Moreover, low molecular weight (LMW) (2-ring and 3-ring) and medium molecular weight (MMW) (4-ring) PAHs contribute dominantly to the gas phase, while the particulate phase is associated with MMW (4-ring) and high molecular weight (HMW) (5-ring and 6-ring) PAHs. Gas/particle partitioning coefficient (log Kp) was calculated, and values varied between −4.13 and −1.49. It can be seen that the log Kp increased with the molecular weight of the PAHs and that the log Kp is different between cold and warm seasons for HMW PAHs but not for LMW PAHs. Diagnostic ratios of PAHs, which were employed to estimate the primary source of PAHs in Strasbourg, indicate that fuel combustion and biomass/coal burning are the possible origins of PAHs in Strasbourg’s atmosphere.

Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 412 ◽  
Author(s):  
Suwubinuer Rekefu ◽  
Dilinuer Talifu ◽  
Bo Gao ◽  
Yusan Turap ◽  
Mailikezhati Maihemuti ◽  
...  

PM2.5 and PM2.5–10 samples were simultaneously collected in Urumqi from January to December 2011, and 14 priority polycyclic aromatic hydrocarbons (PAHs) were determined. The mean concentrations of total PAHs in PM2.5 and PM2.5–10 were 20.90~844.22 ng m−3 and 19.65~176.5 ng m−3 respectively, with the highest in winter and the lowest in summer. Above 80% of PAHs were enriched in PM2.5, which showed remarkable seasonal variations compared to coarse particles. High molecular weight (HMW) PAHs were predominant in PM2.5 (46.61~85.13%), whereas the proportions of lower molecular weight (LMW) and HMW PAHs in PM2.5–10 showed a decreasing and an increasing trend, respectively, from spring to winter. The estimated concentrations of benzo[a]pyrene equivalent carcinogenic potency (BaPeq) in PM2.5 (10.49~84.52 ng m−3) were higher than that of in PM2.5–10 (1.15~13.33 ng m−3) except in summer. The estimated value of inhalation cancer risk in PM2.5 and PM2.5–10 were 1.63 × 10−4~7.35 × 10−3 and 9.94 × 10−5~1.16 × 10−3, respectively, far exceeding the health-based guideline level of 10−4. Diagnostic ratios and positive matrix factorization results demonstrated that PAHs in PM2.5 and PM2.5–10 were from similar sources, such as coal combustion, biomass burning, coking, and petroleum combustion, respectively. Coal combustion was the most important source for PAHs both in PM2.5 and PM2.5–10, accounting for 54.20% and 50.29%, respectively.


Author(s):  
Dina Orazbayeva ◽  
Ulzhalgas Karatayeva ◽  
Kulzhan Beysembayeva ◽  
Kulyash Meyramkulova

Solid-phase microextraction in combination with gas chromatography and mass-spectrometry (GC-MS) was used for determination of benzene, toluene, ethylbenzene and o-xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), and for identification of volatile organic compounds (VOCs) in ambient air of the city of Astana, Kazakhstan. The screening of the samples showed the presence of mono- and polycyclic aromatic hydrocarbons, alkanes, alkenes, phenols, and benzaldehydes. The concentrations of naphthalene were 5-7 times higher than the permissible value, it was detected in all studied air samples. Average concentration of naphthalene was 18.4 μg/m3, acenaphthylene – 0.54 μg/m3, acenaphthene – 1.63 μg/m3, fluorene – 0.79 μg/m3, anthracene – 3.27 μg/m3, phenanthrene – 0.22 μg/m3, fluorantene – 0.74 μg/m3, pyrene – 0.73 μg/m3. Average concentrations of BTEX in the studied samples were 31.1, 84.9, 10.8 and 11.6 μg/m3, respectively. Based on the statistical analysis of the concentrations of BTEX and PAH, the main source of city air pollution with them was assumed to be vehicle emissions.


2018 ◽  
Vol 55 (4C) ◽  
pp. 97
Author(s):  
Nguyen Doan Thien Chi

This research conducted an analysis of 14 Polycyclic Aromatic Hydrocarbons (PAHs) in gas and particle-phase in ambient air in Hochiminh City to investigate their occurence and the gas/particle distribution. Gas and particle samples were collected from June to August 2015 in Hochiminh City and PAHs were treated and analyzed using high performance liquid chromatography with fluorescence detection (HPLC/FLD). Results showed that average concentration of 14 PAHs were from 6.4 to 29.8 ng/m3 and from 50.7 to 133 ng/m3 in particle-phase and in gas-phase, respectively. The concentration of PAHs in the gas-phase accounted for more than 80% of total PAHs concentration in which low molecular weight PAHs as the dominant PAHs. Meanwhile, high molecular weight PAHs distributed mainly in particle-phase. The particle-phase fraction Φ was obtained to understand the partitioning.


2020 ◽  
Author(s):  
Tatiana Drotikova ◽  
Aasim M. Ali ◽  
Anne Karine Halse ◽  
Helena C. Reinardy ◽  
Roland Kallenborn

Abstract. Polycyclic aromatic hydrocarbons (PAHs) are not declining in Arctic air despite reductions in their global emissions. In Svalbard, the Longyearbyen coal-fired power plant is considered to be one of the major local source of PAHs. Power plant stack emissions and ambient air samples, collected simultaneously 1 km (UNIS) and 6 km (Adventdalen) transect distance, were analyzed (gaseous and particulate phases separately) for 22 nitro-PAHs, 9 oxy-PAHs and 16 parent PAHs by GC/ECNI/MS and GC-MS/MS. Results confirm low level of PAH emissions (∑16 PAHs = 1.5 µg kg−1 coal) from the power plant. Phenathrene, 9,10-anthraquinone, 9-fluorenone, fluorene, fluoranthene, and pyrene accounted for 85 % of the plant emission (not including naphthalene). A dilution effect was observed for the transect ambient air samples, 1.26 ± 0.16 and 0.63 ± 0.14 ng m−3 sum all 47 PAH derivatives for UNIS and Adventdalen, respectively. The PAH profile was homogeneous for these recipient stations with phenathrene and 9-fluorenone being most abundant. Principal component analysis, in combination with PAH diagnostic ratios and literature data on different source-specific markers, confirmed coal combustion, gasoline, and diesel traffic as the predominant sources of PAHs. Secondary atmospheric formation of 9-nitroanthracene and 2+3-nitrofluoranthene was evaluated and concluded. Results also indicate that ambient PAH concentrations were affected by precipitation events, and specific humidity is an essential parameter influencing PAH scavenging from the air. The present study contributes important data which can be utilized to eliminate uncertainties in model predictions that aim to assess the extent and impacts of Arctic atmospheric contaminants.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Anita Lakhani

16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were quantified in total suspended ambient particulate matter (TSPM) collected from an industrial site in Agra (India) using gas chromatography. The major industrial activities in Agra are foundries that previously used coal and coke as fuel in cupola furnaces. These foundries have now switched over to natural gas. In addition, use of compressed natural gas has also been promoted and encouraged in automobiles. This study attempts to apportion sources of PAH in the ambient air and the results reflect the advantages associated with the change of fuel. The predominant PAHs in TSPM include high molecular weight (HMW) congeners BghiP, DbA, IP, and BaP. The sum of 16 priority PAHs had a mean value of 72.7 ± 4.7 ng m−3. Potential sources of PAHs in aerosols were identified using diagnostic ratios and principal component analysis. The results reflect a blend of emissions from diesel and natural gas as the major sources of PAH in the city along with contribution from emission of coal, coke, and gasoline.


2019 ◽  
Vol 14 (No. 2) ◽  
pp. 84-93
Author(s):  
Hamid Al-Saad ◽  
Wisam Farid ◽  
Wasen Abdul-Ameer

The soil samples from 0–10 cm depth were collected from three areas (Center of Basrah – CB, Garmat Ali – GA, and Abu Al-Khasib – AK) located along the Shatt Al-Arab River (SR) delta in southern Iraq to estimate the distribution and sources of polycyclic aromatic hydrocarbons (PAHs). The PAH total concentrations in the soils decreased significantly from CB (72.16 ng/g dry weight (DW)), GA (36.48 ng/g DW), to AK (17.30 ng/g DW) gradually indicating the impact of pollution emissions on the distribution of PAHs in soils. The low (2 and 3 ring) and high (4, 5, and 6 ring) molecular weight PAHs accounted for 14%, 16%, 37%, 21%, and 12% respectively in CB soil, 24%, 31%, 29%, 7%, and 10% in GA soil and 40%, 29%, 17%, 8%, and 8% in AK soil. The high molecular weight PAHs predominated in CB soils and the low molecular weight PAHs dominated in GA and AK soils suggesting a difference in emission sources between the studied areas. The PAH diagnostic ratios and principal component analysis (PCA) indicated that PAHs in soils of the SR delta essentially originated from traffic and industrial emissions and biomass and grass/wood/coal combustion. The PAH atmospheric transport from CB area might impact the PAH distribution in the soils of AK area. The risk assessment of the soils has been performed. The total toxic equivalent concentrations (Bap<sub>teq</sub>) of PAHs in the examined areas did not exceed the Dutch target values suggesting that no carcinogenic risk for the SR delta soils was found.  


Sign in / Sign up

Export Citation Format

Share Document