scholarly journals Applications and Limitations of Quantifying Speciated and Source-Apportioned VOCs with Metal Oxide Sensors

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1383
Author(s):  
Kristen Okorn ◽  
Michael Hannigan

While low-cost air quality sensor quantification has improved tremendously in recent years, speciated hydrocarbons have received little attention beyond total lumped volatile organic compounds (VOCs) or total non-methane hydrocarbons (TNMHCs). In this work, we attempt to use two broad response metal oxide VOC sensors to quantify a host of speciated hydrocarbons as well as smaller groups of hydrocarbons thought to be emanating from the same source or sources. For sensors deployed near oil and gas facilities, we utilize artificial neural networks (ANNs) to calibrate our low-cost sensor signals to regulatory-grade measurements of benzene, toluene, and formaldehyde. We also use positive matrix factorization (PMF) to group these hydrocarbons along with others by source, such as wet and dry components of oil and gas operations. The two locations studied here had different sets of reference hydrocarbon species measurements available, helping us determine which specific hydrocarbons and VOC mixtures are best suited for this approach. Calibration fits on the upper end reach above R2 values of 0.6 despite the parts per billion (ppb) concentration ranges of each, which are magnitudes below the manufacturer’s prescribed detection limits for the sensors. The sensors generally captured the baseline trends in the data, but failed to quantitatively estimate larger spikes that occurred intermittently. While compounds with high variability were not suited for this method, its success with several of the compounds studied represents a crucial first step in low-cost VOC speciation. This work has important implications in improving our understanding of the links between health and environment, as different hydrocarbons will have varied consequences in the human body and atmosphere.

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 645
Author(s):  
Kristen Okorn ◽  
Michael Hannigan

As low-cost sensors have become ubiquitous in air quality measurements, there is a need for more efficient calibration and quantification practices. Here, we deploy stationary low-cost monitors in Colorado and Southern California near oil and gas facilities, focusing our analysis on methane and ozone concentration measurement using metal oxide sensors. In comparing different sensor signal normalization techniques, we propose a z-scoring standardization approach to normalize all sensor signals, making our calibration results more easily transferable among sensor packages. We also attempt several different physical co-location schemes, and explore several calibration models in which only one sensor system needs to be co-located with a reference instrument, and can be used to calibrate the rest of the fleet of sensor systems. This approach greatly reduces the time and effort involved in field normalization without compromising goodness of fit of the calibration model to a significant extent. We also explore other factors affecting the performance of the sensor system quantification method, including the use of different reference instruments, duration of co-location, time averaging, transferability between different physical environments, and the age of metal oxide sensors. Our focus on methane and stationary monitors, in addition to the z-scoring standardization approach, has broad applications in low-cost sensor calibration and utility.


2013 ◽  
Vol 201 ◽  
pp. 131-158 ◽  
Author(s):  
Ravi Chand Singh ◽  
Manmeet Pal Singh ◽  
Hardev Singh Virk

Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring, and process control. To meet this demand, considerable research into new sensors is underway, including efforts to enhance the performance of traditional devices, such as resistive metal oxide sensors, through nanoengineering. The resistance of semiconductors is affected by the gaseous ambient. The semiconducting metal oxides based gas sensors exploit this phenomenon. Physical chemistry of solid metal surfaces plays a dominant role in controlling the gas sensing characteristics. Metal oxide sensors have been utilized for several decades for low-cost detection of combustible and toxic gases. Recent advances in nanomaterials provide the opportunity to dramatically increase the response of these materials, as their performance is directly related to exposed surface volume. Proper control of grain size remains a key challenge for high sensor performance. Nanoparticles of SnO2have been synthesized through chemical route at 5, 25 and 50°C. The synthesized particles were sintered at 400, 600 and 800°C and their structural and morphological analysis was carried out using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The reaction temperature is found to be playing a critical role in controlling nanostructure sizes as well as agglomeration. It has been observed that particle synthesized at 5 and 50°C are smaller and less agglomerated as compared to the particles prepared at 25°C. The studies revealed that particle size and agglomeration increases with increase in sintering temperature. Thick films gas sensors were fabricated using synthesized tin dioxide powder and sensing response of all the sensors to ethanol vapors was investigated at different temperatures and concentrations. The investigations revealed that sensing response of SnO2nanoparticles is size dependent and smaller particles display higher sensitivity. Table of Contents


2019 ◽  
Vol 19 (18) ◽  
pp. 8252-8261 ◽  
Author(s):  
Kyle R. Mallires ◽  
Di Wang ◽  
Vishal Varun Tipparaju ◽  
Nongjian Tao

1973 ◽  
Vol 11 (3) ◽  
pp. 480
Author(s):  
J. M. Killey

As onshore oil and gas deposits are becoming more difficult to locate, and as the world demands for energy continue to increase at an alarming rate, oil companies are channeling much of their exploration activities towards offshore operations, and in particular, towards operations centered off Canada's coast lines. Because of the environment, offshore drilling presents problems which are novel to the onshore-geared oil industry. J. M. Killey discusses in detail many of the considerations involved in drafting the offshore drilling contract, concentrating on problems such as the liability of the various parties; costs; scheduling; pollution; conflict of laws; etc. Similarly, he discusses service contracts (such as supply boat charters; towing services; helicopter services; etc.^ which are necessity to the operation of an offshore drilling rig. To complement his paper, the author has included number of appendices which list the various considerations lawyer must keep in mind when drafting contracts for offshore operations.


2021 ◽  

Recent progress on the sensing and monitoring of sulfur dioxide in the environment is presented. The sensing materials covered include potentiometric gas sensors, amperometric sensors, optical sensors involving colorimetric and fluorescence changes, sensors based on ionic liquids, semiconducting metal-oxide sensors, photoacoustic detectors and biosensors.


Rare Metals ◽  
2021 ◽  
Author(s):  
Jia-Xing Song ◽  
Xin-Xing Yin ◽  
Zai-Fang Li ◽  
Yao-Wen Li

Abstract As a promising photovoltaic technology, perovskite solar cells (pero-SCs) have developed rapidly over the past few years and the highest power conversion efficiency is beyond 25%. Nowadays, the planar structure is universally popular in pero-SCs due to the simple processing technology and low-temperature preparation. Electron transport layer (ETL) is verified to play a vital role in the device performance of planar pero-SCs. Particularly, the metal oxide (MO) ETL with low-cost, superb versatility, and excellent optoelectronic properties has been widely studied. This review mainly focuses on recent developments in the use of low-temperature-processed MO ETLs for planar pero-SCs. The optical and electronic properties of widely used MO materials of TiO2, ZnO, and SnO2, as well as the optimizations of these MO ETLs are briefly introduced. The commonly used methods for depositing MO ETLs are also discussed. Then, the applications of different MO ETLs on pero-SCs are reviewed. Finally, the challenge and future research of MO-based ETLs toward practical application of efficient planar pero-SCs are proposed. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document