scholarly journals A Systematic Review of Global Desert Dust and Associated Human Health Effects

Atmosphere ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 158 ◽  
Author(s):  
Xuelei Zhang ◽  
Lijing Zhao ◽  
Daniel Tong ◽  
Guangjian Wu ◽  
Mo Dan ◽  
...  
BMJ Open ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. e029876 ◽  
Author(s):  
Aurelio Tobias ◽  
Angeliki Karanasiou ◽  
Fulvio Amato ◽  
Marta Roqué ◽  
Xavier Querol

IntroductionDesert dust concentrations raise concerns about adverse effects on human health. During the last decade, special attention has been given to mineral dust particles from desert dust and sand storms. However, evidence from previous reviews reported inconclusive results on their health effects and the biological mechanism remains unclear. We aim to systematically synthesise evidence on the health effects of desert dust and sand storms accounting for the relevant desert dust patterns from source areas and emissions, transport and composition.Methods an analysisWe will conduct a systematic review that investigated the health effects of desert dust and sand storms in any population. The search will be performed for any eligible studies from previous reviews and selected electronic databases until 2018. Study selection and reporting will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data from individual studies will be extracted using a standardised data extraction form. Quality of the studies will be assessed using a risk of bias tool for environmental exposures developed by experts convened by the WHO. A meta-analysis will be performed by calculating the appropriate effect measures of association for binary and continuous outcomes from individual studies. Subgroup analyses will be performed by geographical areas to account for desert dust patterns.Ethics and disseminationNo primary data will be collected. For this reason, no formal ethical approval is required. This systematic review will help to fill the research gaps in the knowledge of desert dust on human health. The results will be disseminated through a WHO peer-reviewed publication and a conference presentation.PROSPERO registration numberCRD42018091809


Author(s):  
PA Ganichev

Introduction: Polymer products have become inexpensive, convenient and widely used in all spheres of everyday life recently. Microplastics are found in seawater, wastewater, fresh water, foodstuffs, and air. Over the past few years, the presence of microplastics in treated tap and bottled water has been reported, raising questions and concerns about their potential human health effects. Objective: To summarize and systematize the results of studying health effects of exposure to microplastics in potable water. Materials and methods: A literature review was done based on ten topical articles and reviews published in 2014–2021 out of 64 sources found in the PubMed and Scopus international databases and the Russian Science Citation Index (RSCI). Results and conclusions: Generalization and systematization of the published research data demonstrated the lack of strong evidence to draw conclusions about human health effects of microplastics. Information on toxicokinetics and toxicodynamics of ingested microplastic particles is absent just like the studies of the most common shapes and sizes of plastic particles and health risks from exposure to such particles in drinking water.


1995 ◽  
Vol 3 (1) ◽  
pp. 121-144 ◽  
Author(s):  
Jerome O. Nriagu ◽  
Abdul Kabir

The widening use of chromium and its compounds by local industries has led to a growing concern about the effects of chromium contamination on the Canadian environment. This report summarizes the data on Canadian sources and the concentrations of chromium in air, water, sediments, soil, terrestrial wildlife and aquatic biota. It reviews what little is currently known about the cycling of chromium in Canadian ecoystems, and the need for measuring Cr(III) and Cr(VI) rather than total Cr in the environmental media is emphasized. The potential effects of elevated levels of chromium on plants, soil microorganisms, wildlife, and aquatic biota are discussed. The human health effects are not covered. The conclusion is reached that chromium pollution has become a threat to Canadian ecosystems, especially at the local scale where the ambient chromium concentrations in some surface waters, sediments, and soils are now close to or above the toxicity threshold for a number of the more sensistive organisms.Key words: chromium pollution, chromium toxicity, chromium chemistry, chromium emission, bioaccumulation of chromium.


Sign in / Sign up

Export Citation Format

Share Document