scholarly journals Assessing Upper Tropospheric Jet Streak Proximity Using the Rossby Radius of Deformation

Atmosphere ◽  
2016 ◽  
Vol 8 (12) ◽  
pp. 2 ◽  
Author(s):  
Joshua Kastman ◽  
Patrick Market ◽  
Scott Rochette ◽  
Anthony Lupo
2008 ◽  
Vol 102 (1-2) ◽  
pp. 63-85 ◽  
Author(s):  
Michael L. Kaplan ◽  
C. Huang ◽  
Y.-L. Lin ◽  
J. J. Charney
Keyword(s):  

2008 ◽  
Vol 23 (4) ◽  
pp. 617-643
Author(s):  
Philip N. Schumacher ◽  
Gregory Frosig ◽  
Jason L. Selzler ◽  
Robert A. Weisman

Abstract This is the second of two papers that examine the organization of the precipitation field during central U.S. cold-season cyclones involving inverted troughs (ITs). The first paper (Part I) used a climatology and composites to find synoptic-scale differences between storms with precipitation located ahead of the IT (ahead cases) and those with precipitation located behind the IT (behind cases). This paper expands the conclusions in Part I through the use of a comparative case study between two cyclones. The first cyclone, on 29 October 1996, was an ahead case that produced heavy rainfall and was associated with a potential vorticity (PV) anomaly moving across the central plains. The IT formed in the lee of the Rockies prior to 0600 UTC 29 October and moved east into the northern plains over the next 18 h. The trough itself was coincident with the limiting streamline, which separated moist air rising over the warm front from dry air subsiding behind the cyclone. The second cyclone, on 17–18 January 1996, had precipitation on both sides of the IT and was associated with heavy snow and blizzard conditions in the northern plains and significant ice accumulation in the western Great Lakes. The IT was associated with large frontogenesis over the snow area. The ascent was further enhanced by a jet streak moving across southern Canada. Dynamically, the IT resembled a warm front, with veering winds with height and a strong frontal inversion. The mechanism that appeared to control the different precipitation organization between the two systems was the orientation of the PV anomalies and the airstreams associated with their secondary circulations. This resulted in a differing orientation of the baroclinicity north and east of the cyclone. In the ahead case, the rising branches of the secondary circulations forced by the northern and southern anomalies remained separate. This allowed the baroclinicity to develop along the traditional warm front, while the IT never developed a thermal gradient as it moved east. In the both sides case, the southern stream anomaly helped to fix the northern anomaly-forced jet streak in place, so that a strong temperature gradient developed along the IT with strong frontogenesis and warm-air advection observed behind the IT. As the frontal circulation developed, the direct circulation associated with the right entrance region of a jet streak enhanced the ascent to the west of the IT. A conceptual model is proposed based upon the case studies and the results of Part I. This model can be used by forecasters to differentiate between the precipitation regimes in cyclones associated with ITs.


Author(s):  
Manda B. Chasteen ◽  
Steven E. Koch

AbstractOne of the most prolific tornado outbreaks ever documented occurred on 26–27 April 2011 and comprised three successive episodes of tornadic convection that primarily impacted the southeastern U.S., including two quasi-linear convective systems (hereafter QLCS1 and QLCS2) that preceded the notorious outbreak of long-track, violent tornadoes spawned by numerous supercells on the afternoon of 27 April. The ~36-h period encompassing these three episodes was part of a longer multiday outbreak that occurred ahead of a slowly moving upper-level trough over the Rocky Mountains. In this Part I, we detail how the environment evolved to support this extended outbreak, with particular attention given to the three successive systems that each exhibited a different morphology and severity.The amplifying upper-level trough and attendant jet streak resulted from a Rossby wave breaking event that yielded a complex tropopause structure and supported three prominent shortwave troughs that sequentially moved into the south-central U.S. QLCS1 formed ahead of the second shortwave and was accompanied by rapid flow modifications, including considerable low-level jet (LLJ) intensification. The third shortwave moved into the lee of the Rockies early on 27 April to yield destabilization behind QLCS1 and support the formation of QLCS2, which was followed by further LLJ intensification and helped to establish favorable deep-layer shear profiles over the warm sector. The afternoon supercell outbreak commenced following the movement of this shortwave into the Mississippi Valley, which was attended by a deep tropopause fold, cold front aloft, and dryline that promoted two prominent bands of tornadic supercells over the Southeast.


2018 ◽  
Vol 146 (1) ◽  
pp. 231-242 ◽  
Author(s):  
John Molinari ◽  
David Vollaro

Abstract A strong MJO event produced an upper-tropospheric jet streak in northeast Asia and repeated wave breaking in the jet exit region along 150°E during July 1988. A midlatitude low moved equatorward and intensified in the presence of bandpass-filtered (15–100 day) Q vector forcing for upward motion associated with the wave breaking. This forced ascent helped to moisten the atmosphere enough to increase the column water vapor to above 55 mm. This value was sufficiently large to support a self-sustaining low even after the upper forcing weakened. The horizontal scale of the Q vector forcing was about 1500 km, consistent with the scale of most favorable convective response to quasigeostrophic forcing in the subtropics described by Nie and Sobel. The low lasted one month as it moved southwestward, then westward, while remaining north of 20°N. Maximum precipitation along the track of the low exceeded 700 mm, with an anomaly more than 400 mm. A climatology of long-lasting lows was carried out for the monsoon gyre cases studied previously. During El Niño, long-lasting lows often began near the equator in the central Pacific, and were likely to have a mixed Rossby–gravity wave or equatorial Rossby wave structure. It is speculated that the quasi-biweekly mode, the submonthly oscillation, the 20–25-day mode, and the Pacific–Japan pattern are each variations on this kind of event. During La Niña, long-lasting lows that originated in midlatitudes were more common. It is argued that these lows from midlatitudes represent a unique disturbance type in boreal summer.


1993 ◽  
Vol 247 ◽  
pp. 205-229
Author(s):  
Hong Ma

The effect of a geostrophic boundary current on internal gravity waves is studied with a reduced-gravity model. We found that the boundary current not only modifies the coastal Kelvin wave, but also forms wave guides for short internal gravity waves. The combined effects of current shear, the boundary, and the slope of the interface create the trapping mechanism. These trapped internal gravity waves appear as groups of discrete zonal modes. They have wavelengths comparable to or shorter than the internal Rossby radius of deformation. Their phase speeds are close to that of the internal Kelvin wave. However, they can propagate both in, or opposite to, the direction of the Kelvin wave. The results of the present work suggest the possibility of finding an energetic internal gravity wave phenomenon with near-inertial frequency in a broad geostrophic boundary current.


2006 ◽  
Vol 134 (8) ◽  
pp. 2033-2054 ◽  
Author(s):  
Michael J. Brennan ◽  
Gary M. Lackmann

Abstract Previous research has shown that a lower-tropospheric diabatically generated potential vorticity (PV) maximum associated with an area of incipient precipitation (IP) was critical to the moisture transport north of the PV maximum into the Carolinas and Virginia during the 24–25 January 2000 East Coast cyclone. This feature was almost entirely absent in short-term (e.g., 6–12 h) forecasts from the 0000 UTC 24 January 2000 operational runs of the National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM, formerly Eta) and Global Forecast System (GFS, formerly AVN) models, even though it occurred over land within and downstream of a region of relatively high data density. Observations and model analyses are used to document the forcing for ascent, moisture, and instability (elevated gravitational and/or symmetric) associated with the IP, and the evolution of the IP formation is documented with radar and satellite imagery with the goal of understanding the fundamental nature of this precipitation feature and the models’ inability to predict it. Results show that the IP formed along a zone of lower-tropospheric frontogenesis in a region of strong synoptic-scale forcing for ascent downstream of an approaching upper trough and jet streak. The atmosphere above the frontal inversion was characterized by a mixture of gravitational conditional instability and conditional symmetric instability over a deep layer, and this instability was likely released when air parcels reached saturation as they ascended the frontal surface. The presence of elevated convection is suggested by numerous surface reports of thunder and the cellular nature of radar echoes in the region. Short-term forecasts from the Eta and AVN models failed to capture the magnitude of the frontogenesis, upper forcing, or elevated instability in the region of IP formation. These findings suggest that errors in the initial condition analyses, particularly in the water vapor field, in conjunction with the inability of model physics schemes to generate the precipitation feature, likely played a role in the operational forecast errors related to inland quantitative precipitation forecasts (QPFs) later in the event. A subsequent study will serve to clarify the role of initial conditions and model physics in the representation of the IP by NWP models.


Sign in / Sign up

Export Citation Format

Share Document