Multiscale aspects of the 26–27 April 2011 tornado outbreak. Part I: Outbreak chronology and environmental evolution

Author(s):  
Manda B. Chasteen ◽  
Steven E. Koch

AbstractOne of the most prolific tornado outbreaks ever documented occurred on 26–27 April 2011 and comprised three successive episodes of tornadic convection that primarily impacted the southeastern U.S., including two quasi-linear convective systems (hereafter QLCS1 and QLCS2) that preceded the notorious outbreak of long-track, violent tornadoes spawned by numerous supercells on the afternoon of 27 April. The ~36-h period encompassing these three episodes was part of a longer multiday outbreak that occurred ahead of a slowly moving upper-level trough over the Rocky Mountains. In this Part I, we detail how the environment evolved to support this extended outbreak, with particular attention given to the three successive systems that each exhibited a different morphology and severity.The amplifying upper-level trough and attendant jet streak resulted from a Rossby wave breaking event that yielded a complex tropopause structure and supported three prominent shortwave troughs that sequentially moved into the south-central U.S. QLCS1 formed ahead of the second shortwave and was accompanied by rapid flow modifications, including considerable low-level jet (LLJ) intensification. The third shortwave moved into the lee of the Rockies early on 27 April to yield destabilization behind QLCS1 and support the formation of QLCS2, which was followed by further LLJ intensification and helped to establish favorable deep-layer shear profiles over the warm sector. The afternoon supercell outbreak commenced following the movement of this shortwave into the Mississippi Valley, which was attended by a deep tropopause fold, cold front aloft, and dryline that promoted two prominent bands of tornadic supercells over the Southeast.

Author(s):  
Manda B. Chasteen ◽  
Steven E. Koch

AbstractOne of the most prolific tornado outbreaks ever documented occurred on 26–27 April 2011 and comprised three successive episodes of tornadic convection that culminated with the development of numerous long-track, violent tornadoes over the southeastern U.S. during the afternoon of 27 April. This notorious afternoon supercell outbreak was preceded by two quasi-linear convective systems (hereafter QLCS1 and QLCS2), the first of which was an anomalously severe nocturnal system that rapidly grew upscale during the previous evening. In this Part II, we use a series of RUC 1-h forecasts and output from convection-permitting WRF-ARW simulations configured both with and without latent heat release to investigate how environmental modifications and upscale feedbacks produced by the two QLCSs contributed to the evolution and exceptional severity of this multi-episode outbreak.QLCS1 was primarily responsible for amplifying the large-scale flow pattern, inducing two upper-level jet streaks, and promoting secondary surface cyclogenesis downstream from the primary baroclinic system. Upper-level divergence markedly increased after QLCS1 developed, which yielded strong isallobaric forcing that rapidly strengthened the low-level jet (LLJ) and vertical wind shear over the warm sector and contributed to the system’s upscale growth and notable severity. Moreover, QLCS2 modified the mesoscale environment prior to the supercell outbreak by promoting the downstream formation of a pronounced upper-level jet streak, altering the midlevel jet structure, and furthering the development of a highly ageostrophic LLJ over the Southeast. Collectively, the flow modifications produced by both QLCSs contributed to the notably favorable shear profiles present during the afternoon supercell outbreak.


2021 ◽  
Vol 12 (2) ◽  
pp. 240-248
Author(s):  
Emily Claudia Pereira Ramos ◽  
Luiz Gabriel Cassol Machado ◽  
André Becker Nunes

It can be understood by coupling between jets when Upper-Level Jet (ULJ) superimposes the Low-Level Jet (L LJ). The literature shows that such couplings tend to generate or intensify surface instabilities. Thus, the objective of this study was to analyze the synoptic configuration and the coupling between the jets associated with storms during the period of October 28-30, 2019, when instabilities hit southern Brazil causing intense precipitation and several damages. This work was carried out through the analysis of meteorological fields employing ERA5 reanalysis data and GOES-16 satellite imagery. The coupling between jets was verified in the three days of study. Upward vertical movements at 500 hPa was observed in the same area of occurrence of the upper level difluent flow, as well as an intense 850 hPa northerly flow, a large amount of moisture due to the action of the Northwestern Argentinean Low, and the presence of a frontal system between Uruguay and RS, except on the first day.  Storms developed east (downstream) of the area where the coupling took place. The coupling was observed before and during the development of the mesoscale convective systems, and its dissipation occurred simultaneously with the storm. However, on the 30th, the peak of coupling did not occur together with the most intense phase of the system, it occurred before.


2020 ◽  
Vol 77 (12) ◽  
pp. 4317-4335
Author(s):  
D. Alex Burrows ◽  
Craig R. Ferguson ◽  
Lance F. Bosart

AbstractThe Great Plains (GP) southerly nocturnal low-level jet (GPLLJ) is a dominant contributor to the region’s warm-season (May–September) mean and extreme precipitation, wind energy generation, and severe weather outbreaks—including mesoscale convective systems. The spatiotemporal structure, variability, and impact of individual GPLLJ events are closely related to their degree of upper-level synoptic coupling, which varies from strong coupling in synoptic trough–ridge environments to weak coupling in quiescent, synoptic ridge environments. Here, we apply an objective dynamic classification of GPLLJ upper-level coupling and fully characterize strongly coupled (C) and relatively uncoupled (UC) GPLLJs from the perspective of the ground-based observer. Through composite analyses of C and UC GPLLJ event samples taken from the European Centre for Medium-Range Weather Forecasts’ Coupled Earth Reanalysis of the twentieth century (CERA-20C), we address how the frequency of these jet types, as well as their inherent weather- and climate-relevant characteristics—including wind speed, direction, and shear; atmospheric stability; and precipitation—vary on diurnal and monthly time scales across the southern, central, and northern subregions of the GP. It is shown that C and UC GPLLJ events have similar diurnal phasing, but the diurnal amplitude is much greater for UC GPLLJs. C GPLLJs tend to have a faster and more elevated jet nose, less low-level wind shear, and enhanced CAPE and precipitation. UC GPLLJs undergo a larger inertial oscillation (Blackadar mechanism) for all subregions, and C GPLLJs have greater geostrophic forcing (Holton mechanism) in the southern and northern GP. The results underscore the need to differentiate between C and UC GPLLJs in future seasonal forecast and climate prediction activities.


2015 ◽  
Vol 3 (8) ◽  
pp. 4919-4935
Author(s):  
J. Guerbette ◽  
M. Plu ◽  
C. Barthe ◽  
J.-F. Mahfouf

Abstract. The role of an active phase of the Madden–Julian Oscillation (MJO) on the evolution of a mesoscale convective systems (MCS) leading to a tropical depression is investigated in the South-West Indian Ocean during the Dynamics of the Madden–Julian Oscillation (DYNAMO) field experiment, with a numerical limited-area atmospheric model. A mesoscale vortex is followed in the low-troposphere from the initiation of the active MJO phase. It is shown that the interaction of the vortex with the Equatorial jet associated with the MJO plays an important role on the vortex development. As the vortex encounters the southern part of the low-level jet, it undergoes intensification that is explained by the barotropic conversion of kinetic energy from the low-level jet to the vortex.


2020 ◽  
Vol 148 (11) ◽  
pp. 4607-4627
Author(s):  
Craig R. Ferguson ◽  
Shubhi Agrawal ◽  
Mark C. Beauharnois ◽  
Geng Xia ◽  
D. Alex Burrows ◽  
...  

AbstractIn the context of forecasting societally impactful Great Plains low-level jets (GPLLJs), the potential added value of satellite soil moisture (SM) data assimilation (DA) is high. GPLLJs are both sensitive to regional soil moisture gradients and frequent drivers of severe weather, including mesoscale convective systems. An untested hypothesis is that SM DA is more effective in forecasts of weakly synoptically forced, or uncoupled GPLLJs, than in forecasts of cyclone-induced coupled GPLLJs. Using the NASA Unified Weather Research and Forecasting (NU-WRF) Model, 75 GPLLJs are simulated at 9-km resolution both with and without NASA Soil Moisture Active Passive SM DA. Differences in modeled SM, surface sensible (SH) and latent heat (LH) fluxes, 2-m temperature (T2), 2-m humidity (Q2), PBL height (PBLH), and 850-hPa wind speed (W850) are quantified for individual jets and jet-type event subsets over the south-central Great Plains, as well as separately for each GPLLJ sector (entrance, core, and exit). At the GPLLJ core, DA-related changes of up to 5.4 kg m−2 in SM can result in T2, Q2, LH, SH, PBLH, and W850 differences of 0.68°C, 0.71 g kg−2, 59.9 W m−2, 52.4 W m−2, 240 m, and 4 m s−1, respectively. W850 differences focus along the jet axis and tend to increase from south to north. Jet-type differences are most evident at the GPLLJ exit where DA increases and decreases W850 in uncoupled and coupled GPLLJs, respectively. Data assimilation marginally reduces negative wind speed bias for all jets, but the correction is greater for uncoupled GPLLJs, as hypothesized.


2020 ◽  
Vol 33 (8) ◽  
pp. 3229-3252
Author(s):  
Matthew C. Brown ◽  
Christopher J. Nowotarski

AbstractThis study investigates relationships between climate-scale patterns and seasonal tornado outbreaks across the southeastern United States. Time series of several daily climate indices—including Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Pacific–North American (PNA) pattern, east/west Pacific Oscillation (EPO/WPO), and both raw and detrended Gulf of Mexico SST anomalies (SSTA/SSTAD)—are collected in advance of Southeast severe convective days and grouped using self-organizing maps (SOMs). Spatiotemporal distributions of storm reports within nodes are compared to seasonal climatology, and the evolution of the regional environment for nodes associated with outbreaks is analyzed to provide physical justification for such associations. This study confirms findings from several tornado-related climate studies in the literature, while also identifying a number of new patterns associated with Southeast tornado outbreaks. Both the AO and NAO are relevant across all seasons, especially on lead time scales of 1–2 months, while SSTA/SSTADs are relevant on smaller time scales. The physical connection between these patterns and the regional storm environment is largely related to alterations of upper-level circulation and jet stream patterns, which in turn influence deep- and low-level shear, inland transport of moisture and instability, and other regional characteristics pertinent to tornado outbreaks. These results suggest that climate-scale variability can modulate and potentially be used to predict regional storm environments and their likelihood to produce tornado outbreaks across the Southeast.


Climate ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 73
Author(s):  
Modise Wiston ◽  
Kgakgamatso Marvel Mphale

Southern east Africa is prone to some extreme weather events and interannual variability of the hydrological cycle, including tropical cyclones and heavy rainfall events. Most of these events occur during austral summer and are linked to shifts in the intertropical convergence zone, changes in El Niño Southern Oscillation signatures, sea surface temperature and sea level pressure. A typical example include mesoscale convective systems (MCSs) that occur between October and March along the eastern part, adjacent to the warm waters of Mozambique Channel and Agulhas Current. In this study we discuss a heavy rainfall event over southern Africa, focusing particularly on the period 15–20 January 2013, the period during which MCSs were significant over the subcontinent. This event recorded one of the historic rainfalls due to extreme flooding and overflows, loss of lives and destruction of economic and social infrastructure. An active South Indian Convergence Zone was associated with the rainfall event sustained by a low-level trough linked to a Southern Hemisphere planetary wave pattern and an upper-level ridge over land. In addition, also noteworthy is a seemingly strong connection to the strength of the African Easterly Jet stream. Using rainfall data, satellite imagery and re-analysis (model processed data combined with observations) data, our analysis indicates that there was a substantial relation between rainfall totals recorded/observed and the presence of MCSs. The low-level trough and upper-level ridge contributed to moisture convergence, particularly from tropical South East Atlantic Ocean, which in turn contributed to the prolonged life span of the rainfall event. Positive temperature anomalies favored the substantial contribution of moisture fluxes from the Atlantic Ocean. This study provides a contextual assessment of rainfall processes and insight into the physical control mechanisms and feedback of large-scale convective interactions over tropical southern Africa.


2016 ◽  
Vol 97 (6) ◽  
pp. 935-949 ◽  
Author(s):  
Stephen F. Corfidi ◽  
Michael C. Coniglio ◽  
Ariel E. Cohen ◽  
Corey M. Mead

Abstract The word “derecho” was first used by Gustavus Hinrichs in 1888 to distinguish the widespread damaging windstorms that occurred on occasion over the mid–Mississippi Valley region of the United States from damaging winds associated with tornadoes. The term soon fell into disuse, however, and did not appear in the literature until Robert Johns and William Hirt resurrected it in the mid-1980s. While the present definition of derecho served well during the early years of the term’s reintroduction to the meteorological community, it has several shortcomings. These have become more apparent in recent years as various studies shed light on the physical processes responsible for the production of widespread damaging winds. In particular, the current definition’s emphasis on the coverage of storm reports at the expense of identifying the convective structures and physical processes deemed responsible for the reports has led to the term being applied to wind events beyond those for which it originally was intended. The revised definition of a derecho proposed herein is intended to focus more specifically on those types of windstorms that are the most damaging and potentially life threatening because of their intensity, sustenance, and degree of organization. The proposal is not intended to be final or all encompassing, but rather an initial step toward ultimately realizing a more complete physically based taxonomy that also addresses other forms of damaging-wind-producing convective systems.


2012 ◽  
Vol 25 (21) ◽  
pp. 7328-7340 ◽  
Author(s):  
Jenni L. Evans ◽  
Aviva Braun

A 50-yr climatology (1957–2007) of subtropical cyclones (STs) in the South Atlantic is developed and analyzed. A subtropical cyclone is a hybrid structure (upper-level cold core and lower-level warm core) with associated surface gale-force winds. The tendency for warm season development of North Atlantic STs has resulted in these systems being confused as tropical cyclones (TCs). In fact, North Atlantic STs are a regular source of the incipient vortices leading to North Atlantic TC genesis. In 2004, Hurricane Catarina developed in the South Atlantic and made landfall in Brazil. A TC system had been previously unobserved in the South Atlantic, so the incidence of Catarina highlighted the lack of an ST climatology for the region to provide a context for the likelihood of future systems. Sixty-three South Atlantic STs are documented over the 50-yr period analyzed in this climatology. In contrast to the North Atlantic, South Atlantic STs occur relatively uniformly throughout the year; however, their preferred location of genesis and mechanisms for this genesis do exhibit some seasonal variability. Rossby wave breaking was identified as the mechanism for the ST vortex initiation for North Atlantic STs. A subset of South Atlantic STs forms via this mechanism, however, an additional mechanism for ST genesis is identified here: lee cyclogenesis downstream of the Andes in the Brazil Current region—an area favorable for convection. This formation mechanism is similar to development of type-2 east coast lows in the Tasman Sea off eastern Australia.


Sign in / Sign up

Export Citation Format

Share Document