scholarly journals Stereomutation in Tetracoordinate Centers via Stabilization of Planar Tetracoordinated Systems

Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 79
Author(s):  
Komal Yadav ◽  
Upakarasamy Lourderaj ◽  
U. Deva Priyakumar

The quest for stabilizing planar forms of tetracoordinate carbon started five decades ago and intends to achieve interconversion between [R]- and [S]-stereoisomers without breaking covalent bonds. Several strategies are successful in making the planar tetracoordinate form a minimum on its potential energy surface. However, the first examples of systems where stereomutation is possible were reported only recently. In this study, the possibility of neutral and dications of simple hydrocarbons (cyclopentane, cyclopentene, spiropentane, and spiropentadiene) and their counterparts with the central carbon atom replaced by elements from groups 13, 14, and 15 are explored using ab initio MP2 calculations. The energy difference between the tetrahedral and planar forms decreases from row II to row III or IV substituents. Additionally, aromaticity involving the delocalization of the lone pair on the central atom appears to help in further stabilizing the planar form compared to the tetrahedral form, especially for the row II substituents. We identified 11 systems where the tetrahedral state is a minimum on the potential energy surface, and the planar form is a transition state corresponding to stereomutation. Interestingly, the planar structures of three systems were found to be minimum, and the corresponding tetrahedral states were transition states. The energy profiles corresponding to such transitions involving both planar and tetrahedral states without the breaking of covalent bonds were examined. The systems showcased in this study and research in this direction are expected to realize molecules that experimentally exhibit stereomutation.

1987 ◽  
Vol 65 (3) ◽  
pp. 473-481 ◽  
Author(s):  
Micheline Charpentier ◽  
Jacques Fossey ◽  
Thomas T. Tidwell ◽  
Saul Wolfe

Eleven stationary points on the singlet C2H2F3+ potential energy surface have been calculated using the 3-21G basis set, and characterized as minima (four structures) or first-order saddle points (seven structures) by vibrational analysis. To check the reliability of this basis set, three of the structures have also been optimized at the 6-31G* level; although the geometries change somewhat, the relative energies and nature (maxima, minima) of the structures remain the same. For CF3CH2+ the minimum energy structure has one C—F bond coplanar with the vacant p-atomic orbital at the cationic centre. The structure is 16.4 kcal/mol less stable than the lowest energy conformation of FCH2CF2+, and the barrier for the 1,2 fluorine migration which connects the two structures is low. The cation F2CHCHF+ has a conformation that is a minimum on the potential energy surface that is 16.9 kcal/mol higher in energy than FCH2CF2+; the two structures are separated by a barrier for 1,2 hydrogen migration of 23.5 kcal/mol. The electronic effects in the various structures have been studied using a quantitative PMO analysis of the interactions between the two carbon fragments of the ions. For CF3CH2+ the net effect of the fluorine is highly destabilizing; the principal stabilizing interactions between CF3+ and CH2 consist of π donation from CF3+ to CH2 and homoconjugation of a fluorine lone pair with the cationic centre. No net stabilization attributable to fluorine bridging could be found.


2020 ◽  
Author(s):  
Shi Jun Ang ◽  
Wujie Wang ◽  
Daniel Schwalbe-Koda ◽  
Simon Axelrod ◽  
Rafael Gomez-Bombarelli

<div>Modeling dynamical effects in chemical reactions, such as post-transition state bifurcation, requires <i>ab initio</i> molecular dynamics simulations due to the breakdown of simpler static models like transition state theory. However, these simulations tend to be restricted to lower-accuracy electronic structure methods and scarce sampling because of their high computational cost. Here, we report the use of statistical learning to accelerate reactive molecular dynamics simulations by combining high-throughput ab initio calculations, graph-convolution interatomic potentials and active learning. This pipeline was demonstrated on an ambimodal trispericyclic reaction involving 8,8-dicyanoheptafulvene and 6,6-dimethylfulvene. With a dataset size of approximately</div><div>31,000 M062X/def2-SVP quantum mechanical calculations, the computational cost of exploring the reactive potential energy surface was reduced by an order of magnitude. Thousands of virtually costless picosecond-long reactive trajectories suggest that post-transition state bifurcation plays a minor role for the reaction in vacuum. Furthermore, a transfer-learning strategy effectively upgraded the potential energy surface to higher</div><div>levels of theory ((SMD-)M06-2X/def2-TZVPD in vacuum and three other solvents, as well as the more accurate DLPNO-DSD-PBEP86 D3BJ/def2-TZVPD) using about 10% additional calculations for each surface. Since the larger basis set and the dynamic correlation capture intramolecular non-covalent interactions more accurately, they uncover longer lifetimes for the charge-separated intermediate on the more accurate potential energy surfaces. The character of the intermediate switches from entropic to thermodynamic upon including implicit solvation effects, with lifetimes increasing with solvent polarity. Analysis of 2,000 reactive trajectories on the chloroform PES shows a qualitative agreement with the experimentally-reported periselectivity for this reaction. This overall approach is broadly applicable and opens a door to the study of dynamical effects in larger, previously-intractable reactive systems.</div>


2020 ◽  
Vol 494 (4) ◽  
pp. 5675-5681 ◽  
Author(s):  
Sanchit Chhabra ◽  
T J Dhilip Kumar

ABSTRACT Molecular ions play an important role in the astrochemistry of interstellar and circumstellar media. C3H+ has been identified in the interstellar medium recently. A new potential energy surface of the C3H+–He van der Waals complex is computed using the ab initio explicitly correlated coupled cluster with the single, double and perturbative triple excitation [CCSD(T)-F12] method and the augmented correlation consistent polarized valence triple zeta (aug-cc-pVTZ) basis set. The potential presents a well of 174.6 cm−1 in linear geometry towards the H end. Calculations of pure rotational excitation cross-sections of C3H+ by He are carried out using the exact quantum mechanical close-coupling approach. Cross-sections for transitions among the rotational levels of C3H+ are computed for energies up to 600 cm−1. The cross-sections are used to obtain the collisional rate coefficients for temperatures T ≤ 100 K. Along with laboratory experiments, the results obtained in this work may be very useful for astrophysical applications to understand hydrocarbon chemistry.


2020 ◽  
Vol 22 (39) ◽  
pp. 22289-22301
Author(s):  
Cornelia G. Heid ◽  
Imogen P. Bentham ◽  
Victoria Walpole ◽  
Razvan Gheorghe ◽  
Pablo G. Jambrina ◽  
...  

The ability to orient NO molecules prior to collision with Ar atoms allows selective sampling of different potential energy surface regions and elucidation of the associated collision pathways.


Sign in / Sign up

Export Citation Format

Share Document