scholarly journals Bell-Based Bernoulli Polynomials with Applications

Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Ugur Duran ◽  
Serkan Araci ◽  
Mehmet Acikgoz

In this paper, we consider Bell-based Stirling polynomials of the second kind and derive some useful relations and properties including some summation formulas related to the Bell polynomials and Stirling numbers of the second kind. Then, we introduce Bell-based Bernoulli polynomials of order α and investigate multifarious correlations and formulas including some summation formulas and derivative properties. Also, we acquire diverse implicit summation formulas and symmetric identities for Bell-based Bernoulli polynomials of order α. Moreover, we attain several interesting formulas of Bell-based Bernoulli polynomials of order α arising from umbral calculus.

Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 281
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran

In the present work, a new extension of the two-variable Fubini polynomials is introduced by means of the polyexponential function, which is called the two-variable type 2 poly-Fubini polynomials. Then, some useful relations including the Stirling numbers of the second and the first kinds, the usual Fubini polynomials, and the higher-order Bernoulli polynomials are derived. Also, some summation formulas and an integral representation for type 2 poly-Fubini polynomials are investigated. Moreover, two-variable unipoly-Fubini polynomials are introduced utilizing the unipoly function, and diverse properties involving integral and derivative properties are attained. Furthermore, some relationships covering the two-variable unipoly-Fubini polynomials, the Stirling numbers of the second and the first kinds, and the Daehee polynomials are acquired.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 144 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

The main aim of this paper is to introduce the degenerate truncated forms of multifarious special polynomials and numbers and is to investigate their various properties and relationships by using the series manipulation method and diverse special proof techniques. The degenerate truncated exponential polynomials are first considered and their several properties are given. Then the degenerate truncated Stirling polynomials of the second kind are defined and their elementary properties and relations are proved. Also, the degenerate truncated forms of the bivariate Fubini and Bell polynomials and numbers are introduced and various relations and formulas for these polynomials and numbers, which cover several summation formulas, addition identities, recurrence relationships, derivative property and correlations with the degenerate truncated Stirling polynomials of the second kind, are acquired. Thereafter, the truncated degenerate Bernoulli and Euler polynomials are considered and multifarious correlations and formulas including summation formulas, derivation rules and correlations with the degenerate truncated Stirling numbers of the second are derived. In addition, regarding applications, by introducing the degenerate truncated forms of the classical Bernstein polynomials, we obtain diverse correlations and formulas. Some interesting surface plots of these polynomials in the special cases are provided.


2021 ◽  
Vol 7 (3) ◽  
pp. 3845-3865
Author(s):  
Hye Kyung Kim ◽  
◽  
Dmitry V. Dolgy ◽  

<abstract><p>Many mathematicians have studied degenerate versions of some special polynomials and numbers that can take into account the surrounding environment or a person's psychological burden in recent years, and they've discovered some interesting results. Furthermore, one of the most important approaches for finding the combinatorial identities for the degenerate version of special numbers and polynomials is the umbral calculus. The Catalan numbers and the Daehee numbers play important role in connecting relationship between special numbers.</p> <p>In this paper, we first define the degenerate Catalan-Daehee numbers and polynomials and aim to study the relation between well-known special polynomials and degenerate Catalan-Daehee polynomials of order $ r $ as one of the generalizations of the degenerate Catalan-Daehee polynomials by using the degenerate Sheffer sequences. Some of them include the degenerate and other special polynomials and numbers such as the degenerate falling factorials, the degenerate Bernoulli polynomials and numbers of order $ r $, the degenerate Euler polynomials and numbers of order $ r $, the degenerate Daehee polynomials of order $ r $, the degenerate Bell polynomials, and so on.</p></abstract>


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Hye Kyung Kim

AbstractUmbral calculus is one of the important methods for obtaining the symmetric identities for the degenerate version of special numbers and polynomials. Recently, Kim–Kim (J. Math. Anal. Appl. 493(1):124521, 2021) introduced the λ-Sheffer sequence and the degenerate Sheffer sequence. They defined the λ-linear functionals and λ-differential operators, respectively, instead of the linear functionals and the differential operators of umbral calculus established by Rota. In this paper, the author gives various interesting identities related to the degenerate Lah–Bell polynomials and special polynomials and numbers by using degenerate Sheffer sequences, and at the same time derives the inversion formulas of these identities.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 431 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

In this paper, we introduce the two-variable truncated Fubini polynomials and numbers and then investigate many relations and formulas for these polynomials and numbers, including summation formulas, recurrence relations, and the derivative property. We also give some formulas related to the truncated Stirling numbers of the second kind and Apostol-type Stirling numbers of the second kind. Moreover, we derive multifarious correlations associated with the truncated Euler polynomials and truncated Bernoulli polynomials.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yuankui Ma ◽  
Dae San Kim ◽  
Taekyun Kim ◽  
Hanyoung Kim ◽  
Hyunseok Lee

Abstract Recently, the nth Lah–Bell number was defined as the number of ways a set of n elements can be partitioned into nonempty linearly ordered subsets for any nonnegative integer n. Further, as natural extensions of the Lah–Bell numbers, Lah–Bell polynomials are defined. We study Lah–Bell polynomials with and without the help of umbral calculus. Notably, we use three different formulas in order to express various known families of polynomials such as higher-order Bernoulli polynomials and poly-Bernoulli polynomials in terms of the Lah–Bell polynomials. In addition, we obtain several properties of Lah–Bell polynomials.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 219
Author(s):  
Paolo Emilio Ricci ◽  
Rekha Srivastava ◽  
Pierpaolo Natalini

In this article, we derive representation formulas for a class of r-associated Stirling numbers of the second kind and examine their connections with a class of generalized Bernoulli polynomials. Herein, we use the Blissard umbral approach and the familiar Bell polynomials. Links with available literature on this subject are also pointed out. The extension to the bivariate case is discussed.


Author(s):  
Waseem A. Khan

The main purpose of this paper is to introduce a new class of $q$-Hermite-Fubini numbers and polynomials by combining the $q$-Hermite polynomials and $q$-Fubini polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive $q$-integers.&nbsp; Also, we establish some relationships for $q$-Hermite-Fubini polynomials associated with $q$-Bernoulli polynomials, $q$-Euler polynomials and $q$-Genocchi polynomials and $q$-Stirling numbers of the second kind.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 538 ◽  
Author(s):  
H. M. Srivastava ◽  
Serkan Araci ◽  
Waseem A. Khan ◽  
Mehmet Acikgöz

In this paper, we propose to investigate the truncated-exponential-based Apostol-type polynomials and derive their various properties. In particular, we establish the operational correspondence between this new family of polynomials and the familiar Apostol-type polynomials. We also obtain some implicit summation formulas and symmetric identities by using their generating functions. The results, which we have derived here, provide generalizations of the corresponding known formulas including identities involving generalized Hermite-Bernoulli polynomials.


Sign in / Sign up

Export Citation Format

Share Document