scholarly journals Degenerate Catalan-Daehee numbers and polynomials of order $ r $ arising from degenerate umbral calculus

2021 ◽  
Vol 7 (3) ◽  
pp. 3845-3865
Author(s):  
Hye Kyung Kim ◽  
◽  
Dmitry V. Dolgy ◽  

<abstract><p>Many mathematicians have studied degenerate versions of some special polynomials and numbers that can take into account the surrounding environment or a person's psychological burden in recent years, and they've discovered some interesting results. Furthermore, one of the most important approaches for finding the combinatorial identities for the degenerate version of special numbers and polynomials is the umbral calculus. The Catalan numbers and the Daehee numbers play important role in connecting relationship between special numbers.</p> <p>In this paper, we first define the degenerate Catalan-Daehee numbers and polynomials and aim to study the relation between well-known special polynomials and degenerate Catalan-Daehee polynomials of order $ r $ as one of the generalizations of the degenerate Catalan-Daehee polynomials by using the degenerate Sheffer sequences. Some of them include the degenerate and other special polynomials and numbers such as the degenerate falling factorials, the degenerate Bernoulli polynomials and numbers of order $ r $, the degenerate Euler polynomials and numbers of order $ r $, the degenerate Daehee polynomials of order $ r $, the degenerate Bell polynomials, and so on.</p></abstract>

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Hye Kyung Kim

AbstractUmbral calculus is one of the important methods for obtaining the symmetric identities for the degenerate version of special numbers and polynomials. Recently, Kim–Kim (J. Math. Anal. Appl. 493(1):124521, 2021) introduced the λ-Sheffer sequence and the degenerate Sheffer sequence. They defined the λ-linear functionals and λ-differential operators, respectively, instead of the linear functionals and the differential operators of umbral calculus established by Rota. In this paper, the author gives various interesting identities related to the degenerate Lah–Bell polynomials and special polynomials and numbers by using degenerate Sheffer sequences, and at the same time derives the inversion formulas of these identities.


2020 ◽  
Vol 108 (122) ◽  
pp. 103-120
Author(s):  
Neslihan Kilar ◽  
Yilmaz Simsek

The formula for the sums of powers of positive integers, given by Faulhaber in 1631, is proven by using trigonometric identities and some properties of the Bernoulli polynomials. Using trigonometric functions identities and generating functions for some well-known special numbers and polynomials, many novel formulas and relations including alternating sums of powers of positive integers, the Bernoulli polynomials and numbers, the Euler polynomials and numbers, the Fubini numbers, the Stirling numbers, the tangent numbers are also given. Moreover, by applying the Riemann integral and p-adic integrals involving the fermionic p-adic integral and the Volkenborn integral, some new identities and combinatorial sums related to the aforementioned numbers and polynomials are derived. Furthermore, we serve up some revealing and historical remarks and observations on the results of this paper.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1011 ◽  
Author(s):  
Dae Sik Lee ◽  
Hye Kyung Kim ◽  
Lee-Chae Jang

In recent years, many mathematicians have studied the degenerate versions of many special polynomials and numbers. The polyexponential functions were introduced by Hardy and rediscovered by Kim, as inverses to the polylogarithms functions. The paper is divided two parts. First, we introduce a new type of the type 2 poly-Euler polynomials and numbers constructed from the modified polyexponential function, the so-called type 2 poly-Euler polynomials and numbers. We show various expressions and identities for these polynomials and numbers. Some of them involving the (poly) Euler polynomials and another special numbers and polynomials such as (poly) Bernoulli polynomials, the Stirling numbers of the first kind, the Stirling numbers of the second kind, etc. In final section, we introduce a new type of the type 2 degenerate poly-Euler polynomials and the numbers defined in the previous section. We give explicit expressions and identities involving those polynomials in a similar direction to the previous section.


Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Han-Young Kim ◽  
Hyunseok Lee ◽  
Lee-Chae Jang

Abstract Carlitz initiated a study of degenerate Bernoulli and Euler numbers and polynomials which is the pioneering work on degenerate versions of special numbers and polynomials. In recent years, studying degenerate versions regained lively interest of some mathematicians. The purpose of this paper is to study degenerate Bell polynomials by using umbral calculus and generating functions. We derive several properties of the degenerate Bell polynomials including recurrence relations, Dobinski-type formula, and derivatives. In addition, we represent various known families of polynomials such as Euler polynomials, modified degenerate poly-Bernoulli polynomials, degenerate Bernoulli polynomials of the second kind, and falling factorials in terms of degenerate Bell polynomials and vice versa.


2021 ◽  
Vol 19 (1) ◽  
pp. 284-296
Author(s):  
Hye Kyung Kim

Abstract Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson random variables with parameter α > 0 \alpha \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the fully degenerate Bell polynomials. We derive some combinatorial identities for the fully degenerate Bell polynomials related to the n n th moment of the degenerate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters α > 0 \alpha \gt 0 and β > 0 \beta \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the two-variable fully degenerate Bell polynomials. We show their connection with the degenerate Poisson central moments, special numbers and polynomials.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Ugur Duran ◽  
Serkan Araci ◽  
Mehmet Acikgoz

In this paper, we consider Bell-based Stirling polynomials of the second kind and derive some useful relations and properties including some summation formulas related to the Bell polynomials and Stirling numbers of the second kind. Then, we introduce Bell-based Bernoulli polynomials of order α and investigate multifarious correlations and formulas including some summation formulas and derivative properties. Also, we acquire diverse implicit summation formulas and symmetric identities for Bell-based Bernoulli polynomials of order α. Moreover, we attain several interesting formulas of Bell-based Bernoulli polynomials of order α arising from umbral calculus.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 176
Author(s):  
Hye Kyung Kim

Recently, Kim-Kim (J. Math. Anal. Appl. (2021), Vol. 493(1), 124521) introduced the λ-Sheffer sequence and the degenerate Sheffer sequence. In addition, Kim et al. (arXiv:2011.08535v1 17 November 2020) studied the degenerate derangement polynomials and numbers, and investigated some properties of those polynomials without using degenerate umbral calculus. In this paper, the y the degenerate derangement polynomials of order s (s∈N) and give a combinatorial meaning about higher order derangement numbers. In addition, the author gives some interesting identities related to the degenerate derangement polynomials of order s and special polynomials and numbers by using degenerate Sheffer sequences, and at the same time derive the inversion formulas of these identities.


2021 ◽  
Vol 19 (1) ◽  
pp. 878-887
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Dmitry V. Dolgy ◽  
Jin-Woo Park

Abstract Type 2 poly-Bernoulli polynomials were introduced recently with the help of modified polyexponential functions. In this paper, we investigate several properties and identities associated with those polynomials arising from umbral calculus techniques. In particular, we express the type 2 poly-Bernoulli polynomials in terms of several special polynomials, like higher-order Cauchy polynomials, higher-order Euler polynomials, and higher-order Frobenius-Euler polynomials.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yuankui Ma ◽  
Dae San Kim ◽  
Taekyun Kim ◽  
Hanyoung Kim ◽  
Hyunseok Lee

Abstract Recently, the nth Lah–Bell number was defined as the number of ways a set of n elements can be partitioned into nonempty linearly ordered subsets for any nonnegative integer n. Further, as natural extensions of the Lah–Bell numbers, Lah–Bell polynomials are defined. We study Lah–Bell polynomials with and without the help of umbral calculus. Notably, we use three different formulas in order to express various known families of polynomials such as higher-order Bernoulli polynomials and poly-Bernoulli polynomials in terms of the Lah–Bell polynomials. In addition, we obtain several properties of Lah–Bell polynomials.


Filomat ◽  
2017 ◽  
Vol 31 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Yilmaz Simsek

The aim of this paper is to investigate and give a new family of Apell type polynomials, which are related to the Euler, Frobenius-Euler and Apostol-Bernoulli polynomials and numbers and also the generalized Stirling numbers of the second kind etc. The results presented in this paper are based upon the theory of the generating functions. By using functional equations of these generating functions, we drive some identities and relations for these numbers and polynomials. Moreover, we give a computation algorithm these numbers.


Sign in / Sign up

Export Citation Format

Share Document