scholarly journals A Quadratic Mean Field Games Model for the Langevin Equation

Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 68
Author(s):  
Fabio Camilli

We consider a Mean Field Games model where the dynamics of the agents is given by a controlled Langevin equation and the cost is quadratic. An appropriate change of variables transforms the Mean Field Games system into a system of two coupled kinetic Fokker–Planck equations. We prove an existence result for the latter system, obtaining consequently existence of a solution for the Mean Field Games system.

2010 ◽  
Vol 20 (04) ◽  
pp. 567-588 ◽  
Author(s):  
AIME LACHAPELLE ◽  
JULIEN SALOMON ◽  
GABRIEL TURINICI

Motivated by a mean field games stylized model for the choice of technologies (with externalities and economy of scale), we consider the associated optimization problem and prove an existence result. To complement the theoretical result, we introduce a monotonic algorithm to find the mean field equilibria. We close with some numerical results, including the multiplicity of equilibria describing the possibility of a technological transition.


Author(s):  
Виктория Сергеевна Корниенко ◽  
Владимир Викторович Шайдуров ◽  
Евгения Дмитриевна Карепова

Представлен конечно-разностный аналог дифференциальной задачи, сформулированной в терминах теории “игр среднего поля” (mean field games). Задачи оптимизации такого типа формулируются как связанные системы параболических дифференциальных уравнений в частных производных типа Фоккера - Планка и Гамильтона - Якоби - Беллмана. Предложенный конечно-разностный аналог обладает основными свойствами оптимизационной дифференциальной задачи непосредственно на дискретном уровне. В итоге он может служить как приближение, сходящееся к исходной дифференциальной задаче при стремлении шагов дискретизации к нулю, так и как самостоятельная оптимизационная задача с конечным числом участников. Для предложенного аналога построен алгоритм монотонной минимизации функционала стоимости, проиллюстрированный на модельной экономической задаче In most forecasting problems, overstating or understating forecast leads to various losses. Traditionally, in the theory of “mean field games”, the functional responsible for the costs of implementing the interaction of the continuum of agents between each other is supposed to be dependent on the squared function of control of the system. Since additional external factors can influence the player’s strategy, the control function of a dynamic system is more complex. Therefore, the purpose of this article is to develop a computational algorithm applicable for more general set of control functions. As a research method, a computational experiment and proof of the stability of the constructed computational scheme are used in this study. As a result, the numerical algorithm was applied on the problem of economic interaction in the presence of alternative resources. We consider the model, in which a continuum of consumer agents consists of households deciding on heating, having a choice between the cost of installing and maintaining the thermal insulation or the additional cost of electricity. In the framework of the problem, the convergence of the method is numerically demonstrated. Conclusions. The article considers a model of the strategic interaction of continuum of agents, the interaction of which is determined by a coupled differential equations, namely, the Fokker - Planck and the Hamilton - Jacobi - Bellman one. To approximate the differential problem, difference schemes with a semi-Lagrangian approximation are used, which give a direct rule for minimizing the cost functional


2012 ◽  
Vol 22 (09) ◽  
pp. 1250022 ◽  
Author(s):  
OLIVIER GUÉANT

Mean field games models describing the limit of a large class of stochastic differential games, as the number of players goes to +∞, have been introduced by J.-M. Lasry and P.-L. Lions in Refs. 10–12. We use a change of variables to transform the mean field games (MFG) equations into a system of simpler coupled partial differential equations, in the case of a quadratic Hamiltonian. This system is then used to exhibit a monotonic scheme to build solutions of the MFG equations. Effective numerical methods based on this constructive scheme are presented and numerical experiments are carried out.


2021 ◽  
Vol 62 (8) ◽  
pp. 083302
Author(s):  
Thibault Bonnemain ◽  
Thierry Gobron ◽  
Denis Ullmo

Author(s):  
Alain Bensoussan ◽  
Jens Frehse ◽  
Phillip Yam
Keyword(s):  

2013 ◽  
Vol 143 (5) ◽  
pp. 1021-1045 ◽  
Author(s):  
Aleks Jevnikar

We consider a class of variational equations with exponential nonlinearities on a compact Riemannian surface, describing the mean-field equation of the equilibrium turbulence with arbitrarily signed vortices. For the first time, we consider the problem with both supercritical parameters and we give an existence result by using variational methods. In doing so, we present a new Moser–Trudinger-type inequality under suitable conditions on the centre of mass and the scale of concentration of both eu and e−u, where u is the unknown function in the equation.


2020 ◽  
Vol 9 (4) ◽  
Author(s):  
Thibault Bonnemain ◽  
Thierry Gobron ◽  
Denis Ullmo

Mean Field Games provide a powerful framework to analyze the dynamics of a large number of controlled agents in interaction. Here we consider such systems when the interactions between agents result in a negative coordination and analyze the behavior of the associated system of coupled PDEs using the now well established correspondence with the non linear Schrödinger equation. We focus on the long optimization time limit and on configurations such that the game we consider goes through different regimes in which the relative importance of disorder, interactions between agents and external potential vary, which makes possible to get insights on the role of the forward-backward structure of the Mean Field Game equations in relation with the way these various regimes are connected.


Sign in / Sign up

Export Citation Format

Share Document