scholarly journals Numerical Solution of an Interval-Based Uncertain SIR (Susceptible–Infected–Recovered) Epidemic Model by Homotopy Analysis Method

Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 114
Author(s):  
Emmanuel A. Bakare ◽  
Snehashish Chakraverty ◽  
Radovan Potucek

This work proposes an interval-based uncertain Susceptible–Infected–Recovered (SIR) epidemic model. The interval model has been numerically solved by the homotopy analysis method (HAM). The SIR epidemic model is proposed and solved under different uncertain intervals by the HAM to obtain the numerical solution of the model. Furthermore, the SIR ODE model was transformed into a stochastic differential equation (SDE) model and the results of the stochastic and deterministic models were compared using numerical simulations. The results obtained were compared with the numerical solution and found to be in good agreement. Finally, various simulations were done to discuss the solution.

Author(s):  
V. Ananthaswamy ◽  
K. Renganathan

In this paper we discuss with magneto hydrodynamic viscous flow due to a shrinking sheet in the presence of suction. We also discuss two dimensional and axisymmetric shrinking for various cases. Using similarity transformation the governing boundary layer equations are converted into its dimensionless form. The transformed simultaneous ordinary differential equations are solved analytically by using Homotopy analysis method. The approximate analytical expression of the dimensionless velocity, dimensionless temperature and dimensionless concentration are derived using the Homotopy analysis method through the guessing solutions. Our analytical results are compared with the previous work and a good agreement is observed.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Z. Pashazadeh Atabakan ◽  
A. Kazemi Nasab ◽  
A. Kılıçman ◽  
Zainidin K. Eshkuvatov

Spectral homotopy analysis method (SHAM) as a modification of homotopy analysis method (HAM) is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange interpolation solutions, and exact solutions.


2009 ◽  
Vol 64 (1-2) ◽  
pp. 59-64 ◽  
Author(s):  
Saeid Abbasbandy ◽  
Tasawar Hayat ◽  
Rahmat Ellahi ◽  
Saleem Asghar

Series solution for a steady flow of a third grade fluid between two porous walls is given by the homotopy analysis method (HAM). Comparison with the existing numerical solution is shown. It is found that, unlike the numerical solution, the present series solution holds for all values of the material parameter of a third grade fluid.


Sign in / Sign up

Export Citation Format

Share Document